1
|
Aquino M, Santoro S, Di Profio G, Francesco La Russa M, Limonti C, Straface S, D'Andrea G, Curcio E, Siciliano A. Membrane distillation for separation and recovery of valuable compounds from anaerobic digestates. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
2
|
Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159283. [PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
Collapse
Affiliation(s)
- Bogna Sniatala
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tonni Agustiono Kurniawan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
3
|
Effects of Calcium on the Removal of Ammonium from Aged Landfill Leachate by Struvite Precipitation. WATER 2022. [DOI: 10.3390/w14121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Ammonium in landfill leachates is a major contributor to environmental degradation if not effectively treated. However, it could be converted to a valuable fertilizer when it is co-precipitated with phosphate and magnesium as struvite. Low-cost magnesium and phosphate sources are sought to offset the co-precipitation treatment costs, but most of the identified alternative magnesium sources have significant amounts of calcium, which may negatively impact the ammonium removal rates. In this study, the effects of calcium on ammonium removal from high-strength aged field landfill leachate as struvite were investigated. Laboratory-scale batch tests were conducted to assess the effects of the pH, Mg2+:NH4+:PO43−, and Ca2+:Mg2+ molar ratios on ammonium removal. Magnesium chloride salt was used as a model dissolved magnesium source, whereas different compounds derived from dolomite (CaMg(CO3)2) were used as model solid-phase magnesium sources. X-ray powder diffraction and activity ratio diagrams were used to delineate the ammonium removal mechanisms and struvite stability. The ammonium removal rate of the magnesium salt decreased from approximately 97% to 70%, upon increasing the Ca2+:Mg2+ molar ratio from 0 to 1.0, for the Mg2+:NH4+:PO43− molar ratio of 1.25:1:1.25 and pH = 9.5. For similar pH values, as well as the Mg2+:NH4+:PO43− and Ca2+:Mg2+ molar ratios, the ammonium removal rates by the dolomite-derived compounds reached up to 55%, which highlighted the limited availability of magnesium in solid phases, in addition to the negative impacts of calcium. The diffractometric analysis and thermodynamic calculations revealed the stable regions of struvite in the presence of competing solid phases. The new findings in this study could aid in the design of ammonium and phosphate removal and recovery systems by struvite precipitation.
Collapse
|
4
|
Abstract
Anaerobic digestion (AD) represents an advantageous solution for the treatment and valorization of organic waste and wastewater. To be suitable for energy purposes, biogas generated in AD must be subjected to proper upgrading treatments aimed at the removal of carbon dioxide and other undesirable gases. Pressurized anaerobic digestion (PDA) has gained increasing interest in recent years, as it allows the generation of a high-quality biogas with a low CO2 content. However, high pressures can cause some negative impacts on the AD process, which could be accentuated by feedstock characteristics. Until now, few studies have focused on the application of PAD to the treatment of real waste. The present work investigated, for the first time, the performance of the pressurized anaerobic digestion of raw compost leachate. The study was conducted in a lab-scale pressurized CSTR reactor, working in semi-continuous mode. Operating pressures from the atmospheric value to 4 bar were tested at organic loading rate (OLR) values of 20 and 30 kgCOD/m3d. In response to the rise in operating pressure, for both OLR values tested, a decrease of CO2 content in biogas was observed, whereas the CH4 fraction increased to values around 75% at 4 bar. Despite this positive effect, the pressure growth caused a decline in COD removal from 88 to 62% in tests with OLR = 20 kgCOD/m3d. At OLR = 30 kgCOD/m3d, an overload condition was observed, which induced abatements of about 56%, regardless of the applied pressure. With both OLR values, biogas productions and specific methane yields decreased largely when the pressure was brought from atmospheric value to just 1 bar. The values went from 0.33 to 0.27 LCH4/gCODremoved at 20 kgCOD/m3d, and from 0.27 to 0.18 LCH4/gCODremoved at 30 kgCOD/m3d. Therefore, as the pressure increased, although there was an enhanced biogas quality, the overall amount of methane was lowered. The pressured conditions did not cause substantial modification in the characteristics of digestates.
Collapse
|
5
|
Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. SUSTAINABILITY 2020. [DOI: 10.3390/su12187538] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abatement of nutrient compounds from aqueous waste and wastewater is currently a priority issue. Indeed, the uncontrolled discharge of high levels of nutrients into water bodies causes serious deteriorations of environmental quality. On the other hand, the increasing request of nutrient compounds for agronomic utilizations makes it strictly necessary to identify technologies able to recover the nutrients from wastewater streams so as to avoid the consumption of natural resources. In this regard, the removal and recovery of nitrogen and phosphorus from aqueous waste and wastewater as struvite (MgNH4PO4·6H2O) represents an attractive approach. Indeed, through the struvite precipitation it is possible to effectively remove the ammonium and phosphate content of many types of wastewater and to produce a solid compound, with only a trace of impurities. This precipitate, due to its chemical characteristics, represents a valuable multi-nutrients slow release fertilizer for vegetables and plants growth. For these reasons, the struvite precipitation technology constantly progresses on several aspects of the process. This manuscript provides a comprehensive review on the recent developments in this technology for the removal and recovery of nutrients from aqueous waste and wastewater. The theoretical background, the parameters, and the operating conditions affecting the process evolution are initially presented. After that, the paper focuses on the reagents exploitable to promote the process performance, with particular regard to unconventional low-cost compounds. In addition, the development of reactors configurations, the main technologies implemented on field scale, as well as the recent works on the use of struvite in agronomic practices are presented.
Collapse
|
6
|
Abstract
The removal of nitrate from aqueous environments through zero-valent metallic elements is an attractive technique that has gained increasing interest in recent years. In comparison to other metallic elements, zero-valent magnesium (ZVM) has numerous beneficial aspects. Nevertheless, the use of Mg0 particles for nitrate reduction in column systems has not been investigated yet. To overcome the lack of research, in the present study, a wide experimental activity was carried out to develop a chemical denitrification process through ZVM in batch column equipment. Several tests were executed to evaluate the effects of recirculation hydraulic velocity, pH, Mg0 amount, N-NO3− initial concentration and temperature on the process performance. The results show that the process efficiency is positively influenced by the recirculation velocity increase. In particular, the optimal condition was detected with a value of 1 m/min. The process pH was identified as the main operating parameter. At pH 3, abatements higher than 86.6% were reached for every initial nitrate concentration tested. In these conditions, nitrogen gas was detected as the main reaction product. The pH increase up to values of 5 and 7 caused a drastic denitrification decline with observed efficiencies below 26%. At pH 3, the ratio (RMN) between Mg0 and initial nitrate amount also plays a key role in the treatment performance. A characteristic value of about RMN = 0.333 gMg0/mgN-NO3− was found with which it is possible to reach the maximum reaction rate. Unexpectedly, the process was negatively affected by the increase in temperature from 20 to 40 °C. At 20 °C, the material showed satisfactory denitrification efficiencies in subsequent reuse cycles. With the optimal RMN ratio, removals up to 90% were detected by reusing the reactive material three times. By means of a kinetic analysis, a mathematical law able to describe the nitrate abatement curves was defined. Moreover, the relation between the observed kinetic constant and the operating parameters was recognized. Finally, the reaction pathways were proposed and the corrosion reaction products formed during the treatment were identified.
Collapse
|
7
|
Moragaspitiya C, Rajapakse J, Millar GJ. Effect of Ca:Mg ratio and high ammoniacal nitrogen on characteristics of struvite precipitated from waste activated sludge digester effluent. J Environ Sci (China) 2019; 86:65-77. [PMID: 31787191 DOI: 10.1016/j.jes.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/10/2023]
Abstract
This study revealed the relationship between the presence of calcium impurities and ammoniacal nitrogen concentration upon crystallization of struvite. The research hypothesis was that the presence of both calcium and high concentrations of ammoniacal nitrogen (328-1000 mg/L) in waste activated sludge may influence the struvite quality and acid stability. Hence, we studied the impact of Ca:Mg ratio upon morphology, particle size, purity and dissolution of struvite, in the presence of varying levels of excess ammoniacal nitrogen. X-ray diffraction revealed that up to 31.4% amorphous material was made which was assigned to hydroxyapatite. Increasing the ammoniacal nitrogen concentration and elevation of the Mg:Ca ratio maximized the presence of struvite. Struvite particle size was also increased by ammoniacal nitrogen as was twinning of the crystals. Tests with dilute solutions of organic acid revealed the sensitivity of struvite dissolution to the physical characteristics of the struvite. Smaller particles (21.2 μm) dissolved at higher rates than larger particles (35.86 μm). However, struvite dissolved rapidly as the pH was further reduced irrespective of the physical characteristics. Therefore, addition of struvite to low pH soils was not viewed as beneficial in terms of controlled nutrient release. Overall, this study revealed that waste activated sludge effluent with high ammoniacal nitrogen was prospective for synthesis of high quality struvite material.
Collapse
Affiliation(s)
- Chathurani Moragaspitiya
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jay Rajapakse
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia.
| | - Graeme J Millar
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| |
Collapse
|
8
|
Biogas Generation through Anaerobic Digestion of Compost Leachate in Semi-Continuous Completely Stirred Tank Reactors. Processes (Basel) 2019. [DOI: 10.3390/pr7090635] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The composting process of organic fraction of municipal solid waste, besides to the residual compost, generates a wastewater that is characterized by a high organic load. The application of anaerobic processes represents an advantageous solution for the treatment and valorization of this type of wastewater. Nevertheless, few works have been focused on the anaerobic digestion of compost leachate. To overcome this dearth, in the present paper an extensive experimental investigation was carried out to develop and analyse the anaerobic treatment of young leachate in completely stirred tank reactors (CSTR). Initially, it was defined a suitable leachate pretreatment to correct its acidic characteristics that is potentially able to inhibit methanogenic biomass activity. The pretreated leachate was fed to the digester over the start-up phase that was completed in about 40 days. During the operational period, the organic load rate (OLR) changed between 4.25 kgCOD/m3d and 38.5 kgCOD/m3d. The chemical oxygen demand (COD) abatement was higher than 90% for OLR values up to 14.5 kgCOD/m3d and around to 80% for applied loads equal to 24.5 kgCOD/m3d. At this OLR, it was reached the maximum daily biogas production of about 9.3 Lbiogas/(Lreactord). The CH4 fraction was between 70%–78% and the methane production yield in the range 0.34–0.38 LCH4/gCODremoved. The deterioration of biogas production started for OLR values that were over the threshold of 24.5 kgCOD/m3d when a volatile fatty acids (VFA) accumulation occurred and the pH dropped below 6.5. The maximum ratio between VFA and alkalinity (ALK) tolerable in the CSTR was identified to be 0.5 gCH3COOH/gCaCO3. Through an economic analysis, it was proven that the digestion of compost leachate could ensure significant economic profits. Furthermore, the produced digestate had characteristics that were compatible for agricultural applications.
Collapse
|
9
|
Experimental Analysis and Modeling of Nitrate Removal through Zero-Valent Magnesium Particles. WATER 2019. [DOI: 10.3390/w11061276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pollution of water by nitrates represents an important environmental and health issue. The development of sustainable technologies that are able to efficiently remove this contaminant is a key challenge in the field of wastewater treatment. Chemical denitrification by means of zero-valent metallic elements is an interesting method to reduce the oxidized forms of nitrogen. Compared to other metallic reactants, zero-valent magnesium (ZVM) has many profitable aspects, but its use for nitrate removal has scarcely been investigated. In the present work, several batch tests were conducted to examine the concurrent effects of pH, initial nitrate concentration and Mg0 quantity on process performance. The experimental results proved that at pH 3, for a given initial nitrate concentration, the dose of ZVM largely influences process efficiency. In particular, with a ratio between Mg0 and initial N-NO3− amount (Mg/NNi) of 0.33 g/mg, it is possible to obtain complete denitrification within 30 min. Beyond this ratio, no further improvement of treatment was observed. The experiments allowed us to identify the nitrogen forms produced during the treatment. Nitrogen gas was generally the main reaction product, but the trends of the different compounds (NO3−, NO2−, NH4+ and N2) notably changed in response to the modification of operating parameters. Moreover, the results demonstrated that, in a highly acidic environment, when treating solutions with a low nitrate concentration, process performances are unsatisfactory even when using a high Mg/NNi ratio. By increasing the process pH to 5 and 7, a significant denitrification decline occurred. Furthermore, at these pH levels, the enhancement of nitrate concentration caused a progressive process deterioration. Through detailed analysis of experimental results, reactions kinetics and new mathematical equations, able to describe the trends of different nitrogen forms, have been defined. Moreover, reactions pathways have been proposed. Finally, the characterization of exhausted material allowed us to identify the corrosion products formed during the treatment.
Collapse
|
10
|
Biofuel Production and Phosphorus Recovery through an Integrated Treatment of Agro-Industrial Waste. SUSTAINABILITY 2018. [DOI: 10.3390/su11010052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aimed to develop an integrated treatment of agro-industrial waste for biofuel (biogas and syngas) production and for phosphorus recovery. In the first step, an anaerobic digestion (AD) process was carried out on two different mixtures of raw agro-industrial residues. Specifically, a mixture of asparagus and tomato wastes (mixture-1) and a mixture of potatoes and kiwifruit residues (mixture-2) were investigated. The results proved that the properties of mixtures notably affect the evolution of the digestion process. Indeed, despite the lower organic load, the maximum biogas yield, of about 0.44 L/gCODremoved, was obtained for mixture-1. For mixture-2, the digestion process was hindered by the accumulation of acidity due to the lack of alkalinity in respect to the amount of volatile fatty acids. In the second step, the digestates from AD were utilized for syngas production using supercritical water gasification (SCWG) at 450 °C and 250 bar. Both the digestates were rapidly converted into syngas, which was mainly composed of H2, CO2, CH4, and CO. The maximum values of global gasification efficiency, equal to 56.5 g/kgCOD, and gas yield, equal to 1.8 mol/kgTS, were detected for mixture-2. The last step of the integrated treatment aimed to recover the phosphorus content, in the form of MgKPO4ˑ6H2O, from the residual liquid fraction of SCWG. The experimental results proved that at pH = 10 and Mg/P = 1 it is possible to obtain almost complete phosphorus removal. Moreover, by using the scanning electronic microscopy, it was demonstrated that the produced precipitate was effectively composed of magnesium potassium phosphate crystals.
Collapse
|