1
|
Elvira-Hernández EA, Anaya-Zavaleta JC, Martínez-Cisneros E, López-Huerta F, Aguilera-Cortés LA, Herrera-May AL. Electromechanical Modeling of Vibration-Based Piezoelectric Nanogenerator with Multilayered Cross-Section for Low-Power Consumption Devices. MICROMACHINES 2020; 11:mi11090860. [PMID: 32957544 PMCID: PMC7569856 DOI: 10.3390/mi11090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
Piezoelectric nanogenerators can convert energy from ambient vibrations into electrical energy. In the future, these nanogenerators could substitute conventional electrochemical batteries to supply electrical energy to consumer electronics. The optimal design of nanogenerators is fundamental in order to achieve their best electromechanical behavior. We present the analytical electromechanical modeling of a vibration-based piezoelectric nanogenerator composed of a double-clamped beam with five multilayered cross-sections. This nanogenerator design has a central seismic mass (910 μm thickness) and substrate (125 μm thickness) of polyethylene terephthalate (PET) as well as a zinc oxide film (100 nm thickness) at the bottom of each end. The zinc oxide (ZnO) films have two aluminum electrodes (100 nm thickness) through which the generated electrical energy is extracted. The analytical electromechanical modeling is based on the Rayleigh method, Euler–Bernoulli beam theory and Macaulay method. In addition, finite element method (FEM) models are developed to estimate the electromechanical behavior of the nanogenerator. These FEM models consider air damping at atmospheric pressure and optimum load resistance. The analytical modeling results agree well with respect to those of FEM models. For applications under accelerations in y-direction of 2.50 m/s2 and an optimal load resistance of 32,458 Ω, the maximum output power and output power density of the nanogenerator at resonance (119.9 Hz) are 50.44 μW and 82.36 W/m3, respectively. This nanogenerator could be used to convert the ambient mechanical vibrations into electrical energy and supply low-power consumption devices.
Collapse
Affiliation(s)
- Ernesto A. Elvira-Hernández
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico; (E.A.E.-H.); (E.M.-C.)
| | - Juan C. Anaya-Zavaleta
- Departamento de Ingeniería Mecánica, DICIS, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Salamanca 36885, Mexico; (J.C.A.-Z.); (L.A.A.-C.)
| | - Eustaquio Martínez-Cisneros
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico; (E.A.E.-H.); (E.M.-C.)
| | - Francisco López-Huerta
- Facultad de Ingeniería Eléctrica y Electrónica, Universidad Veracruzana, Calzada Ruíz Cortines 455, Boca del Río, Veracruz 94294, Mexico;
| | - Luz Antonio Aguilera-Cortés
- Departamento de Ingeniería Mecánica, DICIS, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Salamanca 36885, Mexico; (J.C.A.-Z.); (L.A.A.-C.)
| | - Agustín L. Herrera-May
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico; (E.A.E.-H.); (E.M.-C.)
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Calzada Ruíz Cortines 455, Boca del Río, Veracruz 94294, Mexico
- Correspondence: ; Tel.: +52-229-775-2000
| |
Collapse
|
2
|
Abstract
Thin films of ZnO:Ga2O3 (ZGO) were deposited by radio frequency (RF) sputtering at voltages of 0.5, 0.9 and 1.1 kV. The films were studied with respect to their suitability in flexible piezoelectric nanogenerators. The analysis of the spectroscopic and microscopic results showed that piezoelectric features were revealed for the films grown at all sputtering voltages, but the most favorable morphology in terms of low roughness was achieved at 1.1 kV. The effect of the sputtering voltage on the films crystallinity and lattice strain was studied. It was found that the increasing sputtering voltage promoted the films crystallization. Additionally, the presence of oxygen vacancies in the piezoelectric films was negligible as it is not a major factor affecting their performance. The electrical measurements of the Ag/ZnO:Ga2O3/Ag harvester on a flexible substrate in the low-frequency range showed a piezoelectric voltage of 414 mV, a current of 10.4 µA and an electric power output of 1.4 µW at a mass load of 100 g. These results were achieved by a simple architecture of a single piezoelectric layer with a relatively small size of 3 cm2 and small piezoelectric film thickness (600 nm) containing lead-free material. It was proven that the sputtered ZGO films are suitable for energy harvesting elements and their performance could be tuned by the sputtering voltage. Another possible application of the proposed device, excluding low-frequency vibrational harvesting, could be a pressure sensor or strain gauge, due to the good linearity of the electrical parameter dependences on the strain.
Collapse
|