1
|
Armstrong M, Chiangraeng N, Jitvisate M, Rimjaem S, Tashiro K, Nimmanpipug P. Symmetric effect on electrical double-layer characteristics and molecular assembly interplay in imidazolium-based Ionic liquid electrolytes in supercapacitor models. Phys Chem Chem Phys 2024; 26:25808-25818. [PMID: 39354902 DOI: 10.1039/d4cp03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Studies on the ion-layer formation of imidazolium-based ionic liquids have extensively explored how to improve in-depth knowledge of electrical double-layer (EDL) properties. In this computational study, 1-alkyl-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cnmim][NTf2]), namely, [C1mim][NTf2] and [C2mim][NTf2], inside a simulated supercapacitor were investigated to expose an symmetric alkyl chain effect. Molecular dynamic simulations of a supercapacitor model with graphite electrodes were conducted. Changes in charging dynamics and EDL structures at different voltages were studied. Although [C1mim][NTf2] equilibrated much quicker than [C2mim][NTf2], surface charge development on the symmetrical imidazolium ionic liquid was slower than that on the asymmetrical counterpart. Physical EDL structural analysis showed that [C1mim][NTf2] could not rearrange in a rigid co-ion layer, whereby the [C1mim]+ cation stayed adsorbed on the positive electrode throughout all the tested voltages. The strongly attached [C1mim]+ on the electrode surface contributed to low responsiveness in symmetrical [C1mim][NTf2], which was supported by lower overall differential capacitance (CD) magnitude and less sharp CD wings at high voltage when compared to [C2mim][NTf2].
Collapse
Affiliation(s)
- Michael Armstrong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Computational Simulation and Modelling Laboratory (CSML), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthiti Chiangraeng
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Computational Simulation and Modelling Laboratory (CSML), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Monchai Jitvisate
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sakhorn Rimjaem
- Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser, Chiang Mai University, Chiang Mai 50200, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
- PBP-CMU Electron Linac Laboratory, Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kohji Tashiro
- Department of Future Industry-Oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya, 468-8511, Japan
- Aichi Synchrotron Radiation Center, Knowledge Hub Aichi, Minami-Yamaguchi, Seto, 489-0965, Japan
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Computational Simulation and Modelling Laboratory (CSML), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser, Chiang Mai University, Chiang Mai 50200, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Wang Y, Tian G. Theoretical Insight into the Imidazolium-Based Ionic Liquid Interface Structure and Differential Capacitance on Au(111): Effects of the Cationic Substituent Group. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14231-14245. [PMID: 37751408 DOI: 10.1021/acs.langmuir.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Electric double layers (EDLs) play a key role in the electrochemical and energy storage of supercapacitors. It is important to understand the structure and properties of EDLs. In this work, quantum chemical calculations and molecular dynamics (MD) simulations are used to study the microstructure of EDLs of four different substituents of imidazolium-based bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) on the Au(111) surface. It is shown that the particle interactions influence the different arrangements of the anion and cation. More alkyl substitutions and longer alkyl chains result in a higher ELUMO and thus a stronger interaction energy between cations and electrodes. Strong interactions produce linear patterns of anions/cations on the electrode and a maximum value of differential capacitance near PZC, whereas weak interactions generate worm-like patterns of anions/cations on Au(111) and a minimum value of differential capacitance near the PZC. We hold the opinion that the alkyl substitution has more effects on the EDLs. Our analysis provides a new perspective on EDLs structures at the atomic and molecular level. This study provides a good basis and guidance for further understanding the interface phenomena and characteristics of ionic liquids in electrochemical and energy device applications.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Yunnan Open University, Kunming 650223, China
| | - Guocai Tian
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
3
|
Khlyupin A, Nesterova I, Gerke K. Molecular scale roughness effects on electric double layer structure in asymmetric ionic liquids. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Wang P, Zhang J, Xu F, Wang J, Li J, Shen Y, Li C, Cui X, Li S. Improving electric field strength of interfacial electric double layer and cycle stability of Li-ion battery via LiCl additive. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Li L, Lin J, Fu F, Dai Z, Zhou G, Yang Z. Molecular-Level Understanding of Surface Roughness Boosting Segregation Behavior at the ZIF-8/Ionic Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4175-4187. [PMID: 35349284 DOI: 10.1021/acs.langmuir.1c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we perform a series of classical molecular dynamics simulations for two different [HEMIM][DCA] and [BMIM][BF4] ionic liquids (ILs) on the ZIF-8 surface to explore the interfacial properties of metal-organic framework (MOFs)/IL composite materials at the molecular level. Our simulation results reveal that the interfacial structures of anions and cations on the ZIF-8 surface are dominated by the surface roughness due to the steric hindrance, which is extremely different from the driving mechanism based on solid-ion interactions of ILs on flat solid surfaces. At the ZIF-8/IL interfaces, the open sodalite (SOD) cages of the ZIF-8 surface can block most of the large-size cations outside and significantly boost the segregation behavior of anions and cations. In comparison with the [BMIM][BF4] IL, the [HEMIM][DCA] IL has much more anions entering into the open SOD cages owing to the combination of stronger ZIF-8-[DCA]- interactions and more ordered arrangement of [DCA]- anions on the ZIF-8 surface. Furthermore, more and stronger ZIF-8-[BF4]- hydrogen bonds (HBs) are found to exist on the cage edges than the ZIF-8-[DCA]- HBs, further preventing [BF4]- anions from entering into SOD cages. By more detailed analyses, we find that the hydrophobic interaction has an important influence on the interfacial structures of the side chains of [HEMIM]+ and [BMIM]+ cations, while the π-π stacking interaction plays a key role in determining the interfacial structures of the imidazolium rings of both cations. Our simulation results in this work provide a molecular-level understanding of the underlying driving mechanism on segregation behavior at the ZIF-8/IL interfaces.
Collapse
Affiliation(s)
- Li Li
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Fangjia Fu
- School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People's Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
6
|
Pitawela N, Shaw SK. Imidazolium Triflate Ionic Liquids' Capacitance-Potential Relationships and Transport Properties Affected by Cation Chain Lengths. ACS MEASUREMENT SCIENCE AU 2021; 1:117-130. [PMID: 36785553 PMCID: PMC9885949 DOI: 10.1021/acsmeasuresciau.1c00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this paper we report the effects of five imidazolium cations with varying alkyl chain lengths to study the effects of cation size on capacitance versus voltage behavior. The cations include ethyl-, butyl-, hexyl-, octyl-, and decyl-3-methylimidazolium, all paired with a triflate anion. We analyze the capacitance with respect to the cation alkyl chain length qualitatively and quantitatively by analyzing changes in the capacitance-potential curvature shape and magnitude across several standard scanning protocols and electrochemical techniques. Further, three transport properties (viscosity, diffusion coefficient, and electrical conductivity) are experimentally determined and integrated into the outcomes. Ultimately, we find higher viscosities, lower diffusion coefficients, and lower electrical conductivities when the alkyl chain length is increased. Also, capacitance values increase with cation size, except 1-octyl-3-methylimidazolium, which does not follow an otherwise linear trend. This capacitive increase is most pronounced when sweeping the potential in the cathodic direction. These findings challenge the conventional hypothesis that increasing the length of the alkyl chain of imidazolium cations diminishes the capacitance and ionic liquid performance in charge storage.
Collapse
Affiliation(s)
- Niroodha
R. Pitawela
- Department of Chemistry, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Scott K. Shaw
- Department of Chemistry, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Wang Y, Tian G. The Influence of Anion Structure on the Ionic Liquids/Au (100) Interface by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14059-14071. [PMID: 34797668 DOI: 10.1021/acs.langmuir.1c02129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The microstructure of electrical double layers (EDLs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-butyl-3-methylimidazoliumhexafluorophosphate ([Bmim]PF6), and 1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide ([Bmim]TFSI) were studied by quantum chemical calculation and molecular dynamics simulation. For the set of ionic liquids investigated here, we found some interesting universal laws due to differences geometry and electronic structure of anions. We show that the morphology of the three anions on the electrode surface is different due to the different geometric structure. The plane formed by the bottom three atoms of the symmetrically tetrahedral BF4- and the bottom atom of the symmetrically octahedral PF6- face the electrode whether the electrode is charged or not, while the conformation of twisted V-shaped TFSI- changes with different surface charges on the electrode. Meanwhile, we also demonstrate that the energy of highest occupied molecular orbital (EHOMO), the energy of lowest unoccupied molecular orbital (ELUMO) and their energies gap (ΔE) are very interesting due to different electronic structure of anions. Specially, the EHOMO, ELUMO, and ΔE were related to the electronegativity of the central atom in the case of the same symmetry on the neutral surface. The more electronegative the central atom is, the lower EHOMO, ELUMO and higher ΔE values are. However, on the charged surface, the interaction between anion and electrode is opposite to ΔE. Moreover, different arrangements of anion and cation are related to the interaction between particles. The stronger interaction leads a double-row structure and the weak interaction lead worm-like and island patterns on Au (100) surface. In general, we observed that the higher ΔE cause stronger interaction, which lead to different patterns on Au (100) surface. Meanwhile, we also confirmed that the stronger interaction between particles and electrode lead to the thinner effective EDL and a large differential capacitance value. These results provide a new perspective for double-layer structure in atomic and molecular level. This is helpful to deepen the understanding of the interface phenomena and characteristics of [Bmim]BF4, [Bmim]PF6, and [Bmim]TFSI on Au (100) system and provide theoretical basis for the application of these kind of systems.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Yunnan, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Yunnan Open University, Kunming, 650223, China
| | - Guocai Tian
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Yunnan, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
8
|
Wang Y, Sun Y, Dong Y, Tian G. Characterization of the Interface Structure of 1-Ethyl-2,3-alkylimidazolium Bis(trifluoromethylsulfonyl)imide on a Au(111) Surface with Molecular Dynamics Simulations. J Phys Chem B 2021; 125:3677-3689. [PMID: 33797248 DOI: 10.1021/acs.jpcb.0c09994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As a new type of green electrolyte, ionic liquids have been extensively and successfully used in electrochemical systems. It is extremely important to understand the structure and characteristics of their electric double layers. The microscopic structures of room-temperature ionic liquids 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([Emmim]TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim]TFSI) were studied on a flat Au(111) surface using molecular dynamics simulations. Since the interactions of [Emmim]TFSI, [Emmim]+, and TFSI- with the Au(111) surface are stronger than those of molecules (or ions) in the [Emim]TFSI system, the linear arrangement of [Emmim]TFSI and the worm-like pattern of the [Emim]TFSI system can be found near the Au(111) surface. Meanwhile, cations are all parallel to the electrode in the [Emmim]TFSI/Au(111) system and tilted toward the surface in the [Emim]TFSI/Au(111) system. TFSI- presents trans and cis conformations in [Emim]TFSI and [Emmim]TFSI systems adjacent to Au(111), respectively. A Helmholtz-like layer structure with alternating oscillations of anionic and cationic layers can be found in the [Emim]TFSI system, while the molecular layer with cations and anions existing simultaneously can be found in [Emmim]TFSI. Our results confirm that the substitution of hydrogen on C1 by methyl groups in the imidazole ring increases the interaction between the particles. It has also been proved that the change in the anion conformation and cation orientation in the [Emmim]TFSI system can be attributed to the different interaction energies of various particles. The above reasons ultimately make the images on Au(111) different in the two systems. The results provide a new perspective for studying the structure of double layers. They are helpful in deepening the understanding of the interface behavior of ionic liquids and providing a theoretical basis for the design of functional ionic liquids that are suitable for electrochemical equipment.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.,Yunnan Open University, Kunming 650223, China
| | - Yifei Sun
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yubin Dong
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Guocai Tian
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
9
|
Di Trani N, Silvestri A, Wang Y, Demarchi D, Liu X, Grattoni A. Silicon Nanofluidic Membrane for Electrostatic Control of Drugs and Analytes Elution. Pharmaceutics 2020; 12:E679. [PMID: 32707665 PMCID: PMC7407659 DOI: 10.3390/pharmaceutics12070679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Individualized long-term management of chronic pathologies remains an elusive goal despite recent progress in drug formulation and implantable devices. The lack of advanced systems for therapeutic administration that can be controlled and tailored based on patient needs precludes optimal management of pathologies, such as diabetes, hypertension, rheumatoid arthritis. Several triggered systems for drug delivery have been demonstrated. However, they mostly rely on continuous external stimuli, which hinder their application for long-term treatments. In this work, we investigated a silicon nanofluidic technology that incorporates a gate electrode and examined its ability to achieve reproducible control of drug release. Silicon carbide (SiC) was used to coat the membrane surface, including nanochannels, ensuring biocompatibility and chemical inertness for long-term stability for in vivo deployment. With the application of a small voltage (≤ 3 V DC) to the buried polysilicon electrode, we showed in vitro repeatable modulation of membrane permeability of two model analytes-methotrexate and quantum dots. Methotrexate is a first-line therapeutic approach for rheumatoid arthritis; quantum dots represent multi-functional nanoparticles with broad applicability from bio-labeling to targeted drug delivery. Importantly, SiC coating demonstrated optimal properties as a gate dielectric, which rendered our membrane relevant for multiple applications beyond drug delivery, such as lab on a chip and micro total analysis systems (µTAS).
Collapse
Affiliation(s)
- Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.D.T.); (A.S.); (Y.W.); (X.L.)
- University of Chinese Academy of Science (UCAS), Shijingshan, 19 Yuquan Road, Beijing 100049, China
| | - Antonia Silvestri
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.D.T.); (A.S.); (Y.W.); (X.L.)
- Department of Electronics and Telecommunications, Polytechnic of Turin, 10129 Turin, Italy;
| | - Yu Wang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.D.T.); (A.S.); (Y.W.); (X.L.)
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Polytechnic of Turin, 10129 Turin, Italy;
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.D.T.); (A.S.); (Y.W.); (X.L.)
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.D.T.); (A.S.); (Y.W.); (X.L.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
10
|
Zhu J, Lu L, Shi L, Dai Z, Zhuang W, Weng Z. Electric double-layer of [emim][DCA] ionic liquid at heterogeneous interface of TiO2/C composite: From simulation to experiment. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Biagooi M, Nedaaee Oskoee S. The effects of slit-pore geometry on capacitive properties: a molecular dynamics study. Sci Rep 2020; 10:6533. [PMID: 32300127 PMCID: PMC7162961 DOI: 10.1038/s41598-020-62943-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/20/2020] [Indexed: 12/02/2022] Open
Abstract
Ionic-liquids (IL) inside conductive porous media can be used to make electrical energy storage units. Many parameters such as the shape of the pores and the type of IL affect the storage performance. In this work, a simple IL model inside two geometrically different slit-pores is simulated and their capacitive properties are measured. The pores were of finite length, one of them was linear and the other had a convex extra space in the center. The molecular dynamics simulations are done for two, qualitatively, low and high molarities. The pores have been simulated for both initially filled or empty conditions. Differential capacitance, induced charge density, and IL dynamics are calculated for all of the systems.
Collapse
Affiliation(s)
- Morad Biagooi
- Department of Physics, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran
| | - SeyedEhsan Nedaaee Oskoee
- Department of Physics, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
12
|
Yang C, Shi M, Nuli Y, Song X, Zhao L, Liu J, Zhang P, Gao L. Interfacial electrochemical investigation of 3D space-confined MnFe2O4 for high-performance ionic liquid-based supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Differential capacitance of ionic liquid interface with graphene: The effects of correlation and finite size of ions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Abstract
Clean energy and fuel storage is often required for both stationary and automotive applications. Some of the clean energy and fuel storage technologies currently under extensive research and development are hydrogen storage, direct electric storage, mechanical energy storage, solar-thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and on-board vehicular transportation. This Special Issue thus serves the need to promote exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to a practical and sustainable infrastructure.
Collapse
|