1
|
Enhancing Cybersecurity in Smart Grids: False Data Injection and Its Mitigation. ENERGIES 2021. [DOI: 10.3390/en14092657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integration of information technologies with power systems has unlocked unprecedented opportunities in optimization and control fields. Increased data collection and monitoring enable control systems to have a better understanding of the pseudo-real-time condition of power systems. In this fashion, more accurate and effective decisions can be made. This is the key towards mitigating negative impacts of novel technologies such as renewables and electric vehicles and increasing their share in the overall generation portfolio. However, such extensive information exchange has created cybersecurity vulnerabilities in power systems that were not encountered before. It is imperative that these vulnerabilities are understood well, and proper mitigation techniques are implemented. This paper presents an extensive study of cybersecurity concerns in Smart grids in line with latest developments. Relevant standardization and mitigation efforts are discussed in detail and then the classification of different cyber-attacks in smart grid domain with special focus on false data injection (FDI) attack, due to its high impact on different operations. Different uses of this attack as well as developed detection models and methods are analysed. Finally, impacts on smart grid operation and current challenges are presented for future research directions.
Collapse
|
2
|
Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning. Comput Secur 2020. [DOI: 10.1016/j.cose.2020.101994] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
|
4
|
Mitigating the Impacts of Covert Cyber Attacks in Smart Grids Via Reconstruction of Measurement Data Utilizing Deep Denoising Autoencoders. ENERGIES 2019. [DOI: 10.3390/en12163091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As one of the most diversified cyber-physical systems, the smart grid has become more decumbent to cyber vulnerabilities. An intelligently crafted, covert, data-integrity assault can insert biased values into the measurements collected by a sensor network, to elude the bad data detector in the state estimator, resulting in fallacious control decisions. Thus, such an attack can compromise the secure and reliable operations of smart grids, leading to power network disruptions, economic loss, or a combination of both. To this end, in this paper, we propose a novel idea for the reconstruction of sensor-collected measurement data from power networks, by removing the impacts of the covert data-integrity attack. The proposed reconstruction scheme is based on a latterly developed, unsupervised learning algorithm called a denoising autoencoder, which learns about the robust nonlinear representations from the data to root out the bias added into the sensor measurements by a smart attacker. For a robust, multivariate reconstruction of the attacked measurements from multiple sensors, the denoising autoencoder is used. The proposed scheme was evaluated utilizing standard IEEE 14-bus, 39-bus, 57-bus, and 118-bus systems. Simulation results confirm that the proposed scheme can handle labeled and non-labeled historical measurement data and results in a reasonably good reconstruction of the measurements affected by attacks.
Collapse
|