1
|
Hanasaki K, Ali ZA, Choi M, Del Ben M, Wong BM. Implementation of real-time TDDFT for periodic systems in the open-source PySCF software package. J Comput Chem 2023; 44:980-987. [PMID: 36564979 DOI: 10.1002/jcc.27058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
We present a new implementation of real-time time-dependent density functional theory (RT-TDDFT) for calculating excited-state dynamics of periodic systems in the open-source Python-based PySCF software package. Our implementation uses Gaussian basis functions in a velocity gauge formalism and can be applied to periodic surfaces, condensed-phase, and molecular systems. As representative benchmark applications, we present optical absorption calculations of various molecular and bulk systems and a real-time simulation of field-induced dynamics of a (ZnO)4 molecular cluster on a periodic graphene sheet. We present representative calculations on optical response of solids to infinitesimal external fields as well as real-time charge-transfer dynamics induced by strong pulsed laser fields. Due to the widespread use of the Python language, our RT-TDDFT implementation can be easily modified and provides a new capability in the PySCF code for real-time excited-state calculations of chemical and material systems.
Collapse
Affiliation(s)
- Kota Hanasaki
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California, USA
| | - Zulfikhar A Ali
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California, USA
| | - Min Choi
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California, USA
| | - Mauro Del Ben
- Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Bryan M Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
2
|
Herperger KR, Krumland J, Cocchi C. Laser-Induced Electronic and Vibronic Dynamics in the Pyrene Molecule and Its Cation. J Phys Chem A 2021; 125:9619-9631. [PMID: 34714646 DOI: 10.1021/acs.jpca.1c06538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Among polycyclic aromatic hydrocarbons, pyrene is widely used as an optical probe thanks to its peculiar ultraviolet absorption and infrared emission features. Interestingly, this molecule is also an abundant component of the interstellar medium, where it is detected via its unique spectral fingerprints. In this work, we present a comprehensive first-principles study on the electronic and vibrational response of pyrene and its cation to ultrafast, coherent pulses in resonance with their optically active excitations in the ultraviolet region. The analysis of molecular symmetries, electronic structure, and linear optical spectra is used to interpret transient absorption spectra and kinetic energy spectral densities computed for the systems excited by ultrashort laser fields. By disentangling the effects of the electronic and vibrational dynamics via ad hoc simulations with stationary and moving ions, and, in specific cases, with the aid of auxiliary model systems, we rationalize that the nuclear motion is mainly harmonic in the neutral species, while strong anharmonic oscillations emerge in the cation, driven by electronic coherence. Our results provide additional insights into the ultrafast vibronic dynamics of pyrene and related compounds and set the stage for future investigations on more complex carbon-conjugated molecules.
Collapse
Affiliation(s)
- Katherine R Herperger
- Department of Physics, University of Ottawa, Ottawa ON K1N 6N5, Canada.,Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Jannis Krumland
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Caterina Cocchi
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.,Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Sun J, Lee CW, Kononov A, Schleife A, Ullrich CA. Real-Time Exciton Dynamics with Time-Dependent Density-Functional Theory. PHYSICAL REVIEW LETTERS 2021; 127:077401. [PMID: 34459649 DOI: 10.1103/physrevlett.127.077401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Linear-response time-dependent density-functional theory (TDDFT) can describe excitonic features in the optical spectra of insulators and semiconductors, using exchange-correlation (xc) kernels behaving as -1/k^{2} to leading order. We show how excitons can be modeled in real-time TDDFT, using an xc vector potential constructed from approximate, long-range corrected xc kernels. We demonstrate, for various materials, that this real-time approach is consistent with frequency-dependent linear response, gives access to femtosecond exciton dynamics following short-pulse excitations, and can be extended with some caution into the nonlinear regime.
Collapse
Affiliation(s)
- Jiuyu Sun
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Cheng-Wei Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alina Kononov
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - André Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Carsten A Ullrich
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
4
|
Darapaneni P, Meyer AM, Sereda M, Bruner A, Dorman JA, Lopata K. Simulated field-modulated x-ray absorption in titania. J Chem Phys 2020; 153:054110. [PMID: 32770877 DOI: 10.1063/5.0009677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we present a method to compute the x-ray absorption near-edge structure (XANES) spectra of solid-state transition metal oxides using real-time time-dependent density functional theory, including spin-orbit coupling effects. This was performed on bulk-mimicking anatase titania (TiO2) clusters, which allows for the use of hybrid functionals and atom-centered all electron basis sets. Furthermore, this method was employed to calculate the shifts in the XANES spectra of the Ti L-edge in the presence of applied electric fields to understand how external fields can modify the electronic structure, and how this can be probed using x-ray absorption spectroscopy. Specifically, the onset of t2g peaks in the Ti L-edge was observed to red shift and the eg peaks were observed to blue shift with increasing fields, attributed to changes in the hybridization of the conduction band (3d) orbitals.
Collapse
Affiliation(s)
- Pragathi Darapaneni
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Alexander M Meyer
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Mykola Sereda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Adam Bruner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - James A Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
5
|
Tancogne-Dejean N, Oliveira MJT, Andrade X, Appel H, Borca CH, Le Breton G, Buchholz F, Castro A, Corni S, Correa AA, De Giovannini U, Delgado A, Eich FG, Flick J, Gil G, Gomez A, Helbig N, Hübener H, Jestädt R, Jornet-Somoza J, Larsen AH, Lebedeva IV, Lüders M, Marques MAL, Ohlmann ST, Pipolo S, Rampp M, Rozzi CA, Strubbe DA, Sato SA, Schäfer C, Theophilou I, Welden A, Rubio A. Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. J Chem Phys 2020; 152:124119. [PMID: 32241132 DOI: 10.1063/1.5142502] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).
Collapse
Affiliation(s)
- Nicolas Tancogne-Dejean
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Micael J T Oliveira
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Xavier Andrade
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Heiko Appel
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Carlos H Borca
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Guillaume Le Breton
- Département de Physique, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, France
| | - Florian Buchholz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Alberto Castro
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Calle Mariano Esquillor, 50018 Zaragoza, Spain
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Alfredo A Correa
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Umberto De Giovannini
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Alain Delgado
- Xanadu, 777 Bay Street, Toronto, Ontario M5G 2C8, Canada
| | - Florian G Eich
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Johannes Flick
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gabriel Gil
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Adrián Gomez
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Calle Mariano Esquillor, 50018 Zaragoza, Spain
| | - Nicole Helbig
- Nanomat/Qmat/CESAM and ETSF, Université de Liège, B-4000 Sart-Tilman, Belgium
| | - Hannes Hübener
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - René Jestädt
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Joaquim Jornet-Somoza
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Ask H Larsen
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain
| | - Irina V Lebedeva
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain
| | - Martin Lüders
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Miguel A L Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sebastian T Ohlmann
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85741 Garching, Germany
| | - Silvio Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d' Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Markus Rampp
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85741 Garching, Germany
| | - Carlo A Rozzi
- CNR - Istituto Nanoscienze, via Campi 213a, 41125 Modena, Italy
| | - David A Strubbe
- Department of Physics, School of Natural Sciences, University of California, Merced, California 95343, USA
| | - Shunsuke A Sato
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Christian Schäfer
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Iris Theophilou
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Alicia Welden
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| |
Collapse
|