1
|
Xue H, Gao Y, Wu L, Cai X, Liao J, Tan J. Research progress in extraction, purification, structure of fruit and vegetable polysaccharides and their interaction with anthocyanins/starch. Crit Rev Food Sci Nutr 2023:1-26. [PMID: 38108271 DOI: 10.1080/10408398.2023.2291187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Fruits and vegetables contain polysaccharides, polyphenols, antioxidant enzymes, and various vitamins, etc. Fruits and vegetables polysaccharides (FVPs), as an important functional factor in health food, have various biological activities such as lowering blood sugar, blood lipids, blood pressure, inhibiting tumors, and delaying aging, etc. In addition, FVPs exhibit good physicochemical properties including low toxicity, biodegradability, biocompatibility. Increasing research has confirmed that FVPs could enhance the stability and biological activities of anthocyanins, affecting their bioavailability to improve food quality. Simultaneously, the addition of FVPs in natural starch suspension could improve the physicochemical properties of natural starch such as viscosity, gelling property, water binding capacity, and lotion stability. Hence, FVPs are widely used in the modification of natural anthocyanins/starch. A systematic review of the latest research progress and future development prospects of FVPs is very necessary to better understand them. This paper systematically reviews the latest progress in the extraction, purification, structure, and analysis techniques of FVPs. Moreover, the review also introduces the potential mechanisms, evaluation methods, and applications of the interaction between polysaccharides and anthocyanins/starch. The findings can provide important references for the further in-depth development and utilization of FVPs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Liu Wu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, Yichun, Jiangxi, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| |
Collapse
|
2
|
Kakar MU, Karim H, Shabir G, Iqbal I, Akram M, Ahmad S, Shafi M, Gul P, Riaz S, Rehman R, Salari H. A review on extraction, composition, structure, and biological activities of polysaccharides from different parts of Nelumbo nucifera. Food Sci Nutr 2023; 11:3655-3674. [PMID: 37457175 PMCID: PMC10345683 DOI: 10.1002/fsn3.3376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 07/18/2023] Open
Abstract
Nelumbo nucifera (lotus plant) is an important member of the Nelumbonaceae family. This review summarizes the studies conducted on it since the past 15 years to provide an understanding on future areas of focus. Different parts of this plant, that is, leaves, roots, and seeds, have been used as food and for the treatment of various diseases. Polysaccharides have been extracted from different parts using different methods. The manuscript reviews the methods of extraction of polysaccharides used for leaves, roots, and seeds, along with their yield. Some methods can provide better yield while some provide better biological activity with low yield. The composition and structure of extracted polysaccharides have been determined in some studies. Although monosaccharide composition has been determined in various studies, too little information about the structure of polysaccharides from N. nucifera is available in the current literature. Different useful biological activities have been explored using in vivo and in vitro methods, which include antioxidant, antidiabetic, antitumor, anti-osteoporotic, immunomodulatory, and prebiotic activities. Antitumor activity from polysaccharides of lotus leaves is yet to be explored, besides lotus root has been underexplored as compared to other parts (leaves and seeds) according to our literature survey. Studies dedicated to the successful use of combination of extraction methods can be conducted in future. The plant provides a therapeutic as well as nutraceutical potential; however, antimicrobial activity and synergistic relationships of polysaccharides from different parts of the plant need further exploration.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Hammad Karim
- Sheikh Zayed Medical CollegeRahim Yar KhanPunjabPakistan
| | | | - Imran Iqbal
- Department of Information and Computational SciencesSchool of Mathematical Sciences and LMAMPeking UniversityBeijingChina
| | - Muhammad Akram
- Department of Life Sciences, School of ScienceUniversity of Management and Technology (UMT)LahorePakistan
| | - Sajjad Ahmad
- Faculty of Veterinary and Animal SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Muhammad Shafi
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Pari Gul
- Institute of BiochemistryUniversity of BalochistanQuettaPakistan
| | - Sania Riaz
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Rizwan‐ur‐ Rehman
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Hamid Salari
- Department of Horticulture, Faculty of AgricultureKabul UniversityKabulAfghanistan
| |
Collapse
|
3
|
Pumpkin Skin Polysaccharide–Zn(II) Complex: Preparation, Characterization, and Suppression of Inflammation in Zebrafish. Foods 2022; 11:foods11172610. [PMID: 36076796 PMCID: PMC9455613 DOI: 10.3390/foods11172610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, pumpkin (Cucurbita moschata) skin polysaccharide–zinc(II) (PSP−Zn) complex was successfully prepared. The structure and physicochemical properties of PSP and PSP−Zn were analyzed. The anti-inflammatory activity of PSP and PSP−Zn was investigated in zebrafish larvae induced by copper sulphate. PSP and PSP−Zn consisted of rhamnose, arabinose, galactose, glucose, and galacturonic acid. The molecular weight (Mw) of PSP and PSP−Zn were 3.034 × 106 and 3.222 × 106 Da, respectively. Fourier transform infrared spectrum (FT-IR) and circular dichroism (CD) analysis results suggested that the chemical modification of zinc might occur through hydroxyl groups of PSP. The PSP−Zn complex had lamellar texture, smooth surface morphology, and larger particle size. X-ray Diffraction (XRD) analysis revealed that both PSP and PSP−Zn were semi-crystalline substances. PSP−Zn solution showed superior stability in a weak acid and alkaline environment, especially at pH = 6.0. Moreover, PSP and PSP−Zn showed a good inhibitory effect on inflammation cells in zebrafish. Real-time quantitative polymerase chain reaction (RT-PCR) result suggested that the anti-inflammatory mechanism of PSP and PSP−Zn were through downregulation of the expression of nitric oxide synthase 2b (nos2b), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and nuclear factor-kappa B2 (NF-κB2). The present study indicated that PSP−Zn is expected to be a safe and efficient novel zinc supplement with anti-inflammatory activity.
Collapse
|
4
|
Structural characterization and antioxidant activity of polysaccharides extracted from Chinese yam by a cellulase-assisted method. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Anti-Osteoporotic Effect of Viscozyme-Assisted Polysaccharide Extracts from Portulaca oleracea L. on H2O2-Treated MC3T3-E1 Cells and Zebrafish. SEPARATIONS 2022. [DOI: 10.3390/separations9050128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study aims to screen and characterize the protective effect of polysaccharides from Portulaca oleracea L. (POP) against H2O2-stimulated osteoblast apoptosis in vivo and in vitro. The enzymes viscozyme, celluclast, α-amylase, and β-glucanase were used to extract POPs. Among all enzyme-assisted POPs, the first participating fraction of viscozyme extract POP (VPOP1) exhibited the highest antioxidant activity. Hoechst 33342 and acridine orange/ethidium bromide staining and flow cytometry of MC3T3 cells revealed that VPOP1 inhibited apoptosis in a dose-dependent manner. Moreover, VPOP1 increased the expression levels of heme oxygenase-1 (HO-1) and NADPH quinine oxidoreductase 1 (NQO1) and decreased the expression levels of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) in H2O2-induced cells compared with their controls. The results of an in vivo experiment show that VPOP1 significantly reduced reactive oxygen species generation and lipid peroxidation in zebrafish at 72 h post-fertilization and promoted bone growth at 9 days post-fertilization. Furthermore, VPOP1 was identified via 1-phenyl-3-methyl-5-pyrazolone derivatization as an acidic heteropolysaccharide comprising mannose and possessing a molecular weight of approximately 7.6 kDa. Collectively, VPOP1 was selected as a potential anti-osteoporotic functional food because of its protective activity against H2O2-induced damage in vitro and in vivo.
Collapse
|
6
|
Rocha GA, Ferreira RB. Antimicrobial polysaccharides obtained from natural sources. Future Microbiol 2022; 17:701-716. [PMID: 35392662 DOI: 10.2217/fmb-2021-0257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the increase in resistance to conventional antibiotics among bacterial pathogens, the search for new antimicrobials becomes more and more necessary. Although most studies focus on the discovery of antimicrobial peptides for the development of new antibiotics, several others in the literature have described polysaccharides with the same biological activity with the potential for use as therapeutic alternatives. Here we review the currently available literature on antimicrobial polysaccharides isolated from different sources to demonstrate that there are several possible unconventional carbohydrate polymers that could act as therapeutic alternatives in the battle against drug-resistant pathogens.
Collapse
Affiliation(s)
- Giulia A Rocha
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| | - Rosana Br Ferreira
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| |
Collapse
|
7
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Umavathi S, Keerthika M, Gopinath K, Kavitha C, Romij Uddin M, Alagumanian S, Balalakshmi C. Optimization of aqueous-assisted extraction of polysaccharides from pumpkin ( Cucurbita moschata Duch) and their biological activities. Saudi J Biol Sci 2021; 28:6692-6700. [PMID: 34866967 PMCID: PMC8626294 DOI: 10.1016/j.sjbs.2021.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022] Open
Abstract
The pumpkin pulp contains a greater composition of edible polysaccharides and has reported with excellent biological applications. This research pertains to optimize the extraction of polysaccharides from the fleshy portion of the pumpkin using aqueous assisted extraction (AAE). The result showed that the optimal extraction condition of pumpkin polysaccharide was as follows: extraction temperature at 55 °C, pH 4.5, and enzyme concentration of 4000 µ/g for 80 min. Under the optimal extraction condition, the yield of pumpkin polysaccharide via AAE (15.4) was significantly higher. The biological activities of extracted polysaccharide including α-amylase inhibition (57.41% at 1000 µg/mL) and anti-inflammatory (50.41% at 25 µg/mL) activity increased significantly. Additionally, the antioxidant activities of extracted pumpkin polysaccharides including IC50 values of DPPH and ABTS were 59.87% and 58.74%, respectively. The pumpkin polysaccharide has maximum inhibitory effects against bacterial strains especially for Escherichia coli than that of fungal strains. It is suggested that the aqueous assisted extraction of is a cost-effective promising method to decrease the processing time as well as enhancing extracted polysaccharide yield – times.
Collapse
Affiliation(s)
- Saraswathi Umavathi
- Department of Botany, Adhiyaman Arts and Science College for Women, Uthangarai 635207, Tamil Nadu, India
| | - Madhayan Keerthika
- Department of Botany, Adhiyaman Arts and Science College for Women, Uthangarai 635207, Tamil Nadu, India
| | - Kasi Gopinath
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Chandramohan Kavitha
- Department of Chemistry, Adhiyaman Arts and Science College for Women, Uthangarai 635207, Tamil Nadu, India
| | - Md Romij Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shanmugam Alagumanian
- PG and Research Department of Botany, H.H. The Rajah's College (Autonomous), Pudukkottai 622001, Tamil Nadu, India
| | - Chinnasamy Balalakshmi
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
9
|
Ji X, Peng B, Ding H, Cui B, Nie H, Yan Y. Purification, Structure and Biological Activity of Pumpkin Polysaccharides: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904973] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Baixiang Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Hehui Ding
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Bingbing Cui
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Hui Nie
- Guangxi Talent Highland of Preservation and Deep Processing Research in Fruit and Vegetables, Hezhou University, Hezhou, P.R. China
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| |
Collapse
|
10
|
Do DT, Lam DH, Nguyen T, Phuong Mai TT, Phan LTM, Vuong HT, Nguyen DV, Linh NTT, Hoang MN, Mai TP, Nguyen HH. Utilization of Response Surface Methodology in Optimization of Polysaccharides Extraction from Vietnamese Red Ganoderma lucidum by Ultrasound-Assisted Enzymatic Method and Examination of Bioactivities of the Extract. ScientificWorldJournal 2021; 2021:7594092. [PMID: 33628141 PMCID: PMC7892253 DOI: 10.1155/2021/7594092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
Red Ganoderma lucidum (G. lucidum) is a popular medicinal herb commonly used in Vietnamese traditional remedies due to its potential value for health. In this study, polysaccharides were extracted from G. lucidum using ultrasound-assisted enzymatic extraction method. The response surface methodology and Box-Behnken design were employed to investigate the effects of pH, extraction temperature, extraction time, and ultrasonic power on the content of polysaccharides. Based on ultraviolet-visible spectroscopy analysis, the highest content of polysaccharides in the extract was 32.08 mg/g under optimum experimental parameters including enzyme concentration of 3%, pH of 5.5, extraction temperature of 45°C, extraction time of 30 min, and ultrasonic power of 480 W. The Fourier-transform infrared spectroscopy was also used to identify the functional groups in the extracts. The molecular weights of polysaccharides were determined by gel permeation chromatography. The obtained extract was then evaluated for anticancer activities by using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, showing the anticancer activities with the half-maximal inhibitory concentration value of more than 512 μg/mL. This result suggested that UAEE could be considered as an appropriate and effective extraction method for bioactive crude polysaccharides from G. lucidum.
Collapse
Affiliation(s)
- Dat Tran Do
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
| | - Dang Hoang Lam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
| | - Tai Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
| | - Tran Thi Phuong Mai
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
| | - Le Thao My Phan
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
| | - Hoai Thanh Vuong
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
| | - Duc Viet Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
| | - Ngo Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
| | - Minh Nam Hoang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thanh Phong Mai
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Huu Hieu Nguyen
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (CEPP Lab), Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
Enzyme-Assisted Aqueous Extraction of Cobia Liver Oil and Protein Hydrolysates with Antioxidant Activity. Catalysts 2020. [DOI: 10.3390/catal10111323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cobia, Rachycentron canadum, is a medium-size marine fish with emerging global potential for offshore aquaculture. The processing waste, cobia liver, is a raw material rich in polyunsaturated fatty acid oils. In this study, an environmentally friendly green process, aqueous extraction (AE), was used to extract the cobia liver oil. The effect of cooking time and substrate water ratio on the oil extractability was investigated herein. The cooking time of 15 min, and substrate water ratio of 1:2 obtained the highest extraction efficiency. However, the oil extractability was only 18.8%. Thus, enzyme-assisted aqueous extraction (EAAE) was used to increase oil extractability and recovery of protein hydrolysates. The commercial proteases—including alcalase, papain, trypsin, and pepsin—were employed in pretreated cobia liver in order to increase oil release during AE. The EAAE results showed that maximum oil extractability was 38% by papain pretreatment. EAAE greatly improved the extraction efficiency; the oil extractability was double than that of AE (18.8%). The fatty acid profiles revealed that ω-3 polyunsaturated fatty acid contents of extracted oil obtained from AE and EAAE were 21.3% and 19.5%, respectively. Besides, the cobia liver hydrolysates obtained from EAAE by alcalase, papain, pepsin, and trypsin pretreatment showed scavenge DPPH radical activity with EC50 values of 0.92, 1.03, 0.83, and 0.53 mg, respectively. After in vitro simulated gastrointestinal digestion, the protein hydrolysates exhibited scavenge DPPH radical activity with EC50 values of 1.15, 1.55, 0.98, and 0.76 mg for alcalase, papain, pepsin, and trypsin, respectively. The study showed that the EAAE process can be used for extracting fish oil from fish waste while simultaneously obtaining the protein hydrolysates with antioxidant activity.
Collapse
|
12
|
Isolation and structural characterization of a non-competitive α-glucosidase inhibitory polysaccharide from the seeds of Litchi chinensis Sonn. Int J Biol Macromol 2020; 154:1105-1115. [DOI: 10.1016/j.ijbiomac.2019.11.170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
|
13
|
Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int J Biol Macromol 2020; 153:169-179. [PMID: 32105695 DOI: 10.1016/j.ijbiomac.2020.02.252] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/02/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Abstract
Lotus leaf polysaccharides were extracted by enzyme-assisted extraction using α-amylase (LLEP-A), cellulose (LLEP-C), pectinase (LLEP-P) or protease (LLEP-PR). Their physicochemical properties and immunostimulatory activities were compared with those of hot-water extracted polysaccharides (LLWP). HPAEC-PDA and HPSEC-RI profiles indicated that variations in their molecular weight patterns and chemical compositions. Moreover, their effects on proliferation, phagocytic activity, and cytokine production in macrophages could be ordered as LLEP-P > LLEP-C > LLEP-A > LLWP > LLEP-PR, suggesting that LLEP-P by pectinase-assisted extraction was the most potent enhancer of macrophage activation. LLEP-P was further purified by gel filtration, and the main fraction (LLEP-P-І) was obtained to elucidate the structural and functional properties. LLEP-P-І (14.63 × 103 g/mol) mainly consisted of rhamnose, arabinose, galactose, and galacturonic acid at molar percentages of 15.5:15.8:20.1:32.8. FT-IR spectra indicated the predominant acidic and esterified form, suggesting the pectic-like structure. Above all, LLEP-P-І exerted greater stimulation effects on NO and cytokines production and the phagocytic activity in macrophages. Transcriptome analysis also demonstrated that LLEP-P and LLEP-P-І could upregulate macrophage immune response genes, including cytokines, chemokines, and interferon via TLR and JAK-STAT signaling. Thus, these results suggest that pectinase application is most suitable to obtain immunostimulatory polysaccharides from lotus leaves.
Collapse
|