1
|
Purohit SD, Bhaskar R, Singh H, Priyadarshi R, Kim H, Son Y, Gautam S, Han SS. Chitosan-based electrospun fibers for bone-tissue engineering: Recent research advancements. Int J Biol Macromol 2024; 281:136530. [PMID: 39406323 DOI: 10.1016/j.ijbiomac.2024.136530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Chitosan, a sustainable and highly abundant animal-derived biopolymer, possesses versatile properties, such as solubility, film-forming ability, viscosity, ion binding, and antimicrobial qualities, which are suitable for biomedical applications. Due to its charged nature, chitosan is a lucrative biopolymer for scaffold fabrication, especially for bone-tissue engineering applications, using the electrospinning method, which is an industrially suitable, scalable, and swift method for fabricating porous nanocomposite structures. Despite a lot of research being conducted on chitosan-based electrospun materials for bone tissue engineering, the research on this topic has not been thoroughly reviewed. This review article aims to fill this knowledge gap and provides an in-depth discussion of the research on this topic. To start with, a brief overview of bone tissue engineering has been provided, followed by the properties of chitosan, which make it an important biopolymer for this application. Also, the important factors that must be considered while electrospinning chitosan, especially considering its application in bone tissue engineering, have been debated. Further, the type of chitosan-based electrospun material has been discussed along with the recent advancements in this research area. Finally, a brief perspective on the future of this technology has been provided.
Collapse
Affiliation(s)
- Shiv Dutt Purohit
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hemant Singh
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunjin Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Yumi Son
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sneh Gautam
- Department of Molecular Biology & Genetic Engineering, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
Zhanbassynova A, Mukasheva F, Abilev M, Berillo D, Trifonov A, Akilbekova D. Impact of Hydroxyapatite on Gelatin/Oxidized Alginate 3D-Printed Cryogel Scaffolds. Gels 2024; 10:406. [PMID: 38920952 PMCID: PMC11203254 DOI: 10.3390/gels10060406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Fabrication of scaffolds via 3D printing is a promising approach for tissue engineering. In this study, we combined 3D printing with cryogenic crosslinking to create biocompatible gelatin/oxidized alginate (Gel/OxAlg) scaffolds with large pore sizes, beneficial for bone tissue regeneration. To enhance the osteogenic effects and mechanical properties of these scaffolds, we evaluated the impact of hydroxyapatite (HAp) on the rheological characteristics of the 2.86% (1:1) Gel/OxAlg ink. We investigated the morphological and mechanical properties of scaffolds with low, 5%, and high 10% HAp content, as well as the resulting bio- and osteogenic effects. Scanning electron microscopy revealed a reduction in pore sizes from 160 to 180 µm (HAp-free) and from 120 to 140 µm for both HAp-containing scaffolds. Increased stability and higher Young's moduli were measured for 5% and 10% HAp (18 and 21 kPa, respectively) compared to 11 kPa for HAp-free constructs. Biological assessments with mesenchymal stem cells indicated excellent cytocompatibility and osteogenic differentiation in all scaffolds, with high degree of mineralization in HAp-containing constructs. Scaffolds with 5% HAp exhibited improved mechanical characteristics and shape fidelity, demonstrated positive osteogenic impact, and enhanced bone tissue formation. Increasing the HAp content to 10% did not show any advantages in osteogenesis, offering a minor increase in mechanical strength at the cost of significantly compromised shape fidelity.
Collapse
Affiliation(s)
- Ainur Zhanbassynova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| | - Fariza Mukasheva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| | - Madi Abilev
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| | - Dmitriy Berillo
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
| | - Alexander Trifonov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| | - Dana Akilbekova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (A.Z.)
| |
Collapse
|
3
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
4
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
5
|
Bar JK, Lis-Nawara A, Kowalczyk T, Grelewski PG, Stamnitz S, Gerber H, Klimczak A. Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11 TM) Scaffolds. Int J Mol Sci 2023; 24:16747. [PMID: 38069071 PMCID: PMC10705868 DOI: 10.3390/ijms242316747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Bone tissue engineering using different scaffolds is a new therapeutic approach in regenerative medicine. This study explored the osteogenic potential of human dental pulp stem cells (hDPSCs) grown on a hydrolytically modified poly(L-lactide-co-caprolactone) (PLCL) electrospun scaffold and a non-woven hyaluronic acid (HYAFF-11™) mesh. The adhesion, immunophenotype, and osteogenic differentiation of hDPSCs seeded on PLCL and HYAFF-11™ scaffolds were analyzed. The results showed that PLCL and HYAFF-11™ scaffolds significantly supported hDPSCs adhesion; however, hDPSCs' adhesion rate was significantly higher on PLCL than on HYAFF-11™. SEM analysis confirmed good adhesion of hDPSCs on both scaffolds before and after osteogenesis. Alizarin red S staining showed mineral deposits on both scaffolds after hDPSCs osteogenesis. The mRNA levels of runt-related transcription factor 2 (Runx2), collagen type I (Coll-I), osterix (Osx), osteocalcin (Ocn), osteopontin (Opn), bone sialoprotein (Bsp), and dentin sialophosphoprotein (Dspp) gene expression and their proteins were higher in hDPSCs after osteogenic differentiation on both scaffolds compared to undifferentiated hDPSCs on PLCL and HYAFF-11™. These results showed that PLCL scaffolds provide a better environment that supports hDPSCs attachment and osteogenic differentiation than HYAFF-11™. The high mRNA of early osteogenic gene expression and mineral deposits observed after hDPSCs osteogenesis on a PLCL mat indicated its better impact on hDPSCs' osteogenic potential than that of HYAFF-11™, and hDPSC/PLCL constructs might be considered in the future as an innovative approach to bone defect repair.
Collapse
Affiliation(s)
- Julia K. Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Anna Lis-Nawara
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research (IPPT PAN), Polish Academy of Sciences, Adolfa Pawińskiego 5B St., 02-106 Warsaw, Poland;
| | - Piotr G. Grelewski
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Sandra Stamnitz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| | - Hanna Gerber
- Department of Maxillofacial Surgery, Wroclaw Medical University, Borowska 213, 50-556Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| |
Collapse
|
6
|
Lázár I, Čelko L, Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023; 9:746. [PMID: 37754427 PMCID: PMC10530393 DOI: 10.3390/gels9090746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic;
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus
| |
Collapse
|
7
|
Baino F, Montazerian M, Verné E. Cobalt-Doped Bioactive Glasses for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4994. [PMID: 37512268 PMCID: PMC10382018 DOI: 10.3390/ma16144994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Improving angiogenesis is the key to the success of most regenerative medicine approaches. However, how and to which extent this may be performed is still a challenge. In this regard, cobalt (Co)-doped bioactive glasses show promise being able to combine the traditional bioactivity of these materials (especially bone-bonding and osteo-stimulatory properties) with the pro-angiogenic effect associated with the release of cobalt. Although the use and local delivery of Co2+ ions into the body have raised some concerns about the possible toxic effects on living cells and tissues, important biological improvements have been highlighted both in vitro and in vivo. This review aims at providing a comprehensive overview of Co-releasing glasses, which find biomedical applications as various products, including micro- and nanoparticles, composites in combination with biocompatible polymers, fibers and porous scaffolds. Therapeutic applications in the field of bone repair, wound healing and cancer treatment are discussed in the light of existing experimental evidence along with the open issues ahead.
Collapse
Affiliation(s)
- Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterial (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, State College, PA 16801, USA
| | - Enrica Verné
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
8
|
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37310896 PMCID: PMC10354806 DOI: 10.1021/acsabm.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An increasing number of publications over the past ten years have focused on the development of chitosan-based cross-linked scaffolds to regenerate bone tissue. The design of biomaterials for bone tissue engineering applications relies heavily on the ideals set forth by a polytherapy approach called the "Diamond Concept". This methodology takes into consideration the mechanical environment, scaffold properties, osteogenic and angiogenic potential of cells, and benefits of osteoinductive mediator encapsulation. The following review presents a comprehensive summarization of recent trends in chitosan-based cross-linked scaffold development within the scope of the Diamond Concept, particularly for nonload-bearing bone repair. A standardized methodology for material characterization, along with assessment of in vitro and in vivo potential for bone regeneration, is presented based on approaches in the literature, and future directions of the field are discussed.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
| | - Antoine Karoichan
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| |
Collapse
|
9
|
Ren S, Lin Y, Liu W, Yang L, Zhao M. MSC-Exos: Important active factor of bone regeneration. Front Bioeng Biotechnol 2023; 11:1136453. [PMID: 36814713 PMCID: PMC9939647 DOI: 10.3389/fbioe.2023.1136453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Bone defect and repair is a common but difficult problem in restorative and reconstructive surgery. Bone tissue defects of different sizes caused by different reasons bring functional limitations and cosmetic deformities to patients. Mesenchymal stem cells (MSC), a major hotspot in the field of regeneration in recent years, have been widely used in various studies on bone tissue regeneration. Numerous studies have shown that the bone regenerative effects of MSC can be achieved through exosome-delivered messages. Although its osteogenic mechanism is still unclear, it is clear that MSC-Exos can directly or indirectly support the action of bone regeneration. It can act directly on various cells associated with osteogenesis, or by carrying substances that affect cellular activators or the local internal environment in target cells, or it can achieve activation of the osteogenic framework by binding to materials. Therefore, this review aims to summarize the types and content of effective contents of MSC-Exos in bone regeneration, as well as recent advances in the currently commonly used methods to enable the binding of MSC-Exos to the framework and to conclude that MSC-Exos is effective in promoting osteogenesis.
Collapse
Affiliation(s)
- Sihang Ren
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China,NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Wenyue Liu
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| |
Collapse
|
10
|
Alamán‐Díez P, García‐Gareta E, Arruebo M, Pérez MÁ. A bone-on-a-chip collagen hydrogel-based model using pre-differentiated adipose-derived stem cells for personalized bone tissue engineering. J Biomed Mater Res A 2023; 111:88-105. [PMID: 36205241 PMCID: PMC9828068 DOI: 10.1002/jbm.a.37448] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells have contributed to the continuous progress of tissue engineering and regenerative medicine. Adipose-derived stem cells (ADSC) possess many advantages compared to other origins including easy tissue harvesting, self-renewal potential, and fast population doubling time. As multipotent cells, they can differentiate into osteoblastic cell linages. In vitro bone models are needed to carry out an initial safety assessment in the study of novel bone regeneration therapies. We hypothesized that 3D bone-on-a-chip models containing ADSC could closely recreate the physiological bone microenvironment and promote differentiation. They represent an intermedium step between traditional 2D-in vitro and in vivo experiments facilitating the screening of therapeutic molecules while saving resources. Herein, we have differentiated ADSC for 7 and 14 days and used them to fabricate in vitro bone models by embedding the pre-differentiated cells in a 3D collagen matrix placed in a microfluidic chip. Osteogenic markers such as alkaline phosphatase activity, calcium mineralization, changes on cell morphology, and expression of specific proteins (bone sialoprotein 2, dentin matrix acidic phosphoprotein-1, and osteocalcin) were evaluated to determine cell differentiation potential and evolution. This is the first miniaturized 3D-in vitro bone model created from pre-differentiated ADSC embedded in a hydrogel collagen matrix which could be used for personalized bone tissue engineering.
Collapse
Affiliation(s)
- Pilar Alamán‐Díez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| | - Elena García‐Gareta
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental InstituteUniversity College LondonLondonUK
| | - Manuel Arruebo
- Aragón Institute of Nanoscience and Materials (INMA), Consejo Superior de Investigaciones Científicas (CSIC)University of ZaragozaZaragozaSpain,Department of Chemical EngineeringUniversity of ZaragozaZaragozaSpain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| |
Collapse
|
11
|
Rodriguez Barroso LG, Azaman FA, Pogue R, Devine D, Fournet MB. Monitoring In Vitro Extracellular Matrix Protein Conformations in the Presence of Biomimetic Bone-Regeneration Scaffolds Using Functionalized Gold-Edge-Coated Triangular Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:57. [PMID: 36615967 PMCID: PMC9823344 DOI: 10.3390/nano13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In the cellular environment, high noise levels, such as fluctuations in biochemical reactions, protein variability, molecular diffusion, cell-to-cell contact, and pH, can both mediate and interfere with cellular functions. In this work, gold edge-coated triangular silver nanoparticles (AuTSNP) were validated as a promising new tool to indicate protein conformational transitions in cultured cells and to monitor essential protein activity in the presence of an optimized bone biomimetic chitosan-based scaffold whose rational design mimics the ECM as a natural scaffold. A chitosan-based scaffold formulation with hydroxyapatite (CS/HAp) was selected due to its promising features for orthopedic applications, including combined high mechanical strength biocompatibility and biodegradability. Functionalized AuTSNP-based tests with the model ECM protein, fibronectin (Fn), illustrate that the protein interactions can be clearly sensed over time through the local surface plasmon resonance (LSPR) technique. This demonstrates that AuTNSP are a powerful tool to detect protein conformational activity in the presence of biomimetic bone tissue regeneration scaffolds within a cellular environment that comprises a diversity of molecular cues.
Collapse
Affiliation(s)
- Laura G. Rodriguez Barroso
- Technological University of the Shannon: Midlands Midwest, Dublin Rd., N37 HD68 Athlone, Co. Westmeath, Ireland
| | - Farah Alwani Azaman
- Technological University of the Shannon: Midlands Midwest, Dublin Rd., N37 HD68 Athlone, Co. Westmeath, Ireland
| | - Robert Pogue
- Technological University of the Shannon: Midlands Midwest, Dublin Rd., N37 HD68 Athlone, Co. Westmeath, Ireland
- Universidade Católica de Brasília, Campus Asa Norte. SGAN Módulo B 916 Avenida W5—Asa Norte, Brasilia 70790-160-DF, Brazil
| | - Declan Devine
- Technological University of the Shannon: Midlands Midwest, Dublin Rd., N37 HD68 Athlone, Co. Westmeath, Ireland
| | - Margaret Brennan Fournet
- Technological University of the Shannon: Midlands Midwest, Dublin Rd., N37 HD68 Athlone, Co. Westmeath, Ireland
| |
Collapse
|
12
|
Bone Tissue and the Nervous System: What Do They Have in Common? Cells 2022; 12:cells12010051. [PMID: 36611845 PMCID: PMC9818711 DOI: 10.3390/cells12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Degenerative diseases affecting bone tissues and the brain represent important problems with high socio-economic impact. Certain bone diseases, such as osteoporosis, are considered risk factors for the progression of neurological disorders. Often, patients with neurodegenerative diseases have bone fractures or reduced mobility linked to osteoarthritis. The bone is a dynamic tissue involved not only in movement but also in the maintenance of mineral metabolism. Bone is also associated with the generation of both hematopoietic stem cells (HSCs), and thus the generation of the immune system, and mesenchymal stem cells (MSCs). Bone marrow is a lymphoid organ and contains MSCs and HSCs, both of which are involved in brain health via the production of cytokines with endocrine functions. Hence, it seems clear that bone is involved in the regulation of the neuronal system and vice versa. This review summarizes the recent knowledge on the interactions between the nervous system and bone and highlights the importance of the interaction between nerve and bone cells. In addition, experimental models that study the interaction between nerve and skeletal cells are discussed, and innovative models are suggested to better evaluate the molecular interactions between these two cell types.
Collapse
|
13
|
Gabetti S, Masante B, Cochis A, Putame G, Sanginario A, Armando I, Fiume E, Scalia AC, Daou F, Baino F, Salati S, Morbiducci U, Rimondini L, Bignardi C, Massai D. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci Rep 2022; 12:13859. [PMID: 35974079 PMCID: PMC9381575 DOI: 10.1038/s41598-022-18075-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.
Collapse
Affiliation(s)
- Stefano Gabetti
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Beatrice Masante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Cochis
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ileana Armando
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Alessandro Calogero Scalia
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Farah Daou
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Lia Rimondini
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy.
| |
Collapse
|
14
|
Sharifi M, Kheradmandi R, Salehi M, Alizadeh M, Ten Hagen TLM, Falahati M. Criteria, Challenges, and Opportunities for Acellularized Allogeneic/Xenogeneic Bone Grafts in Bone Repairing. ACS Biomater Sci Eng 2022; 8:3199-3219. [PMID: 35816626 DOI: 10.1021/acsbiomaterials.2c00194] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As bone grafts become more commonly needed by patients and as donors become scarcer, acellularized bone grafts (ABGs) are becoming more popular for restorative purposes. While autogeneic grafts are reliable as a gold standard, allogeneic and xenogeneic ABGs have been shown to be of particular interest due to the limited availability of autogeneic resources and reduced patient well-being in long-term surgeries. Because of the complete similarity of their structures with native bone, excellent mechanical properties, high biocompatibility, and similarities of biological behaviors (osteoinductive and osteoconductive) with local bones, successful outcomes of allogeneic and xenogeneic ABGs in both in vitro and in vivo research have raised hopes of repairing patients' bone injuries in clinical applications. However, clinical trials have been delayed due to a lack of standardized protocols pertaining to acellularization, cell seeding, maintenance, and diversity of ABG evaluation criteria. This study sought to uncover these factors by exploring the bone structures, ossification properties of ABGs, sources, benefits, and challenges of acellularization approaches (physical, chemical, and enzymatic), cell loading, and type of cells used and effects of each of the above items on the regenerative technologies. To gain a perspective on the repair and commercialization of products before implementing new research activities, this study describes the differences between ABGs created by various techniques and methods applied to them. With a comprehensive understanding of ABG behavior, future research focused on treating bone defects could provide a better way to combine the treatment approaches needed to treat bone defects.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, The Netherlands
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, The Netherlands
| |
Collapse
|
15
|
Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F, Kargozar S. Stem Cell-Mediated Angiogenesis in Skin Tissue Engineering and Wound Healing. Wound Repair Regen 2022; 30:421-435. [PMID: 35638710 PMCID: PMC9543648 DOI: 10.1111/wrr.13033] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The timely management of skin wounds has been an unmet clinical need for centuries. While there have been several attempts to accelerate wound healing and reduce the cost of hospitalisation and the healthcare burden, there remains a lack of efficient and effective wound healing approaches. In this regard, stem cell‐based therapies have garnered an outstanding position for the treatment of both acute and chronic skin wounds. Stem cells of different origins (e.g., embryo‐derived stem cells) have been utilised for managing cutaneous lesions; specifically, mesenchymal stem cells (MSCs) isolated from foetal (umbilical cord) and adult (bone marrow) tissues paved the way to more satisfactory outcomes. Since angiogenesis plays a critical role in all four stages of normal wound healing, recent therapeutic approaches have focused on utilising stem cells for inducing neovascularisation. In fact, stem cells can promote angiogenesis via either differentiation into endothelial lineages or secreting pro‐angiogenic exosomes. Furthermore, particular conditions (e.g., hypoxic environments) can be applied in order to boost the pro‐angiogenic capability of stem cells before transplantation. For tissue engineering and regenerative medicine applications, stem cells can be combined with specific types of pro‐angiogenic biocompatible materials (e.g., bioactive glasses) to enhance the neovascularisation process and subsequently accelerate wound healing. As such, this review article summarises such efforts emphasising the bright future that is conceivable when using pro‐angiogenic stem cells for treating acute and chronic skin wounds.
Collapse
Affiliation(s)
- Zoleikha Azari
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Chen Y, Sun W, Tang H, Li Y, Li C, Wang L, Chen J, Lin W, Li S, Fan Z, Cheng Y, Chen C. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Front Bioeng Biotechnol 2022; 10:820940. [PMID: 35646833 PMCID: PMC9140325 DOI: 10.3389/fbioe.2022.820940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The foreign body response (FBR) caused by biomaterials can essentially be understood as the interaction between the immune microenvironment and biomaterials, which has severely impeded the application of biomaterials in tissue repair. This concrete interaction occurs via cells and bioactive substances, such as proteins and nucleic acids. These cellular and molecular interactions provide important cues for determining which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can thus be endowed with the ability to modulate the FBR and repair damaged tissue. In terms of cellular, IMBs are modified to modulate functions of immune cells, such as macrophages and mast cells. In terms of bioactive substances, proteins and nucleic acids are delivered to influence the immune microenvironment. Meanwhile, IMBs are designed with high affinity for spatial targets and the ability to self-adapt over time, which allows for more efficient and intelligent tissue repair. Hence, IMB may achieve the perfect functional integration in the host, representing a breakthrough in tissue repair and regeneration medicine.
Collapse
Affiliation(s)
- Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yingze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shenghui Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yu Cheng
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Sivakumar PM, Yetisgin AA, Sahin SB, Demir E, Cetinel S. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydr Polym 2022; 283:119142. [DOI: 10.1016/j.carbpol.2022.119142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
|
18
|
Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Front Bioeng Biotechnol 2022; 10:824156. [PMID: 35480972 PMCID: PMC9035802 DOI: 10.3389/fbioe.2022.824156] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Treating large bone defects, known as critical-sized defects (CSDs), is challenging because they are not spontaneously healed by the patient’s body. Due to the limitations associated with conventional bone grafts, bone tissue engineering (BTE), based on three-dimensional (3D) bioprinted scaffolds, has emerged as a promising approach for bone reconstitution and treatment. Bioprinting technology allows for incorporation of living cells and/or growth factors into scaffolds aiming to mimic the structure and properties of the native bone. To date, a wide range of biomaterials (either natural or synthetic polymers), as well as various cells and growth factors, have been explored for use in scaffold bioprinting. However, a key challenge that remains is the fabrication of scaffolds that meet structure, mechanical, and osteoconductive requirements of native bone and support vascularization. In this review, we briefly present the latest developments and discoveries of CSD treatment by means of bioprinted scaffolds, with a focus on the biomaterials, cells, and growth factors for formulating bioinks and their bioprinting techniques. Promising state-of-the-art pathways or strategies recently developed for bioprinting bone scaffolds are highlighted, including the incorporation of bioactive ceramics to create composite scaffolds, the use of advanced bioprinting technologies (e.g., core/shell bioprinting) to form hybrid scaffolds or systems, as well as the rigorous design of scaffolds by taking into account of the influence of such parameters as scaffold pore geometry and porosity. We also review in-vitro assays and in-vivo models to track bone regeneration, followed by a discussion of current limitations associated with 3D bioprinting technologies for BTE. We conclude this review with emerging approaches in this field, including the development of gradient scaffolds, four-dimensional (4D) printing technology via smart materials, organoids, and cell aggregates/spheroids along with future avenues for related BTE.
Collapse
Affiliation(s)
- Zahra Yazdanpanah
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Zahra Yazdanpanah,
| | - James D. Johnston
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M. L. Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Additive Manufacturing of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)/Poly(D,L-lactide- co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23073895. [PMID: 35409254 PMCID: PMC8999344 DOI: 10.3390/ijms23073895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Polyhydroxyalkanoates are biopolyesters whose biocompatibility, biodegradability, environmental sustainability, processing versatility, and mechanical properties make them unique scaffolding polymer candidates for tissue engineering. The development of innovative biomaterials suitable for advanced Additive Manufacturing (AM) offers new opportunities for the fabrication of customizable tissue engineering scaffolds. In particular, the blending of polymers represents a useful strategy to develop AM scaffolding materials tailored to bone tissue engineering. In this study, scaffolds from polymeric blends consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(D,L-lactide-co-glycolide) (PLGA) were fabricated employing a solution-extrusion AM technique, referred to as Computer-Aided Wet-Spinning (CAWS). The scaffold fibers were constituted by a biphasic system composed of a continuous PHBV matrix and a dispersed PLGA phase which established a microfibrillar morphology. The influence of the blend composition on the scaffold morphological, physicochemical, and biological properties was demonstrated by means of different characterization techniques. In particular, increasing the content of PLGA in the starting solution resulted in an increase in the pore size, the wettability, and the thermal stability of the scaffolds. Overall, in vitro biological experiments indicated the suitability of the scaffolds to support murine preosteoblast cell colonization and differentiation towards an osteoblastic phenotype, highlighting higher proliferation for scaffolds richer in PLGA.
Collapse
|
21
|
Karacan I, Milthorpe B, Ben-Nissan B, Santos J. Stem Cells and Proteomics in Biomaterials and Biomedical Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2022:125-157. [DOI: 10.1007/978-981-16-7435-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration. Polymers (Basel) 2021; 14:polym14010065. [PMID: 35012090 PMCID: PMC8747620 DOI: 10.3390/polym14010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Critical bone defects are a major clinical challenge in reconstructive bone surgery. Polycaprolactone (PCL) mixed with bioceramics, such as hydroxyapatite (HA) and tricalcium phosphate (TCP), create composite scaffolds with improved biological recognition and bioactivity. Electrical stimulation (ES) aims to compensate the compromised endogenous electrical signals and to stimulate cell proliferation and differentiation. We investigated the effects of composite scaffolds (PCL with HA; and PCL with β-TCP) and the use of ES on critical bone defects in Wistar rats using eight experimental groups: untreated, ES, PCL, PCL/ES, HA, HA/ES, TCP, and TCP/ES. The investigation was based on histomorphometry, immunohistochemistry, and gene expression analysis. The vascular area was greater in the HA/ES group on days 30 and 60. Tissue mineralization was greater in the HA, HA/ES, and TCP groups at day 30, and TCP/ES at day 60. Bmp-2 gene expression was higher in the HA, TCP, and TCP/ES groups at day 30, and in the TCP/ES and PCL/ES groups at day 60. Runx-2, Osterix, and Osteopontin gene expression were also higher in the TCP/ES group at day 60. These results suggest that scaffolds printed with PCL and TCP, when paired with electrical therapy application, improve bone regeneration.
Collapse
|
23
|
The Effect of Diabetes Mellitus on IGF Axis and Stem Cell Mediated Regeneration of the Periodontium. Bioengineering (Basel) 2021; 8:bioengineering8120202. [PMID: 34940355 PMCID: PMC8698546 DOI: 10.3390/bioengineering8120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.
Collapse
|
24
|
Oliveira Pinho F, Pinto Joazeiro P, Santos AR. Evaluation of the Growth and Differentiation of Human Fetal Osteoblasts (hFOB) Cells on Demineralized Bone Matrix (DBM). Organogenesis 2021; 17:136-149. [PMID: 34845978 DOI: 10.1080/15476278.2021.2003134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cells with osteogenic potential are believed to be an ideal source for bone tissue bioengineering. Large bone defects require temporary substitution of the damaged parts. In this respect, the transplantation of bone cells cultured on osteogenic substrates has been investigated. To use the natural bone matrix, one approach is the so-called demineralized bone matrix (DBM). In this study, we evaluated the interaction of human fetal osteoblasts (hFOB 1.19 cells, a human fetal osteoblastic cell line) with DBM fragments. No additional bone differentiation inducer was used other than the DBM itself. The samples were processed, had adhesion pattern evaluated and analyzed by light microscopy (cytochemical and immunocytochemical analysis) and electron microscopy (scanning and transmission). The adhesion pattern of hFOB cells on DBM was similar to what was observed on the cell culture plate. Morphological analysis showed that the hFOB cells had emitted filopodia and cellular projections on both controls and DBM. On DBM, the adhered cells emitted prolongations and migrated into the matrix. The monolayer growth pattern was observed as well as the accumulation of filamentous and reticulate extracellular materials when hFOB cells were cultured on the DBM surface. EDS analysis revealed the deposition of calcium on DBM. Immunocytochemical data showed that the hFOB cells were able to secrete extracellular matrix molecules such as fibronectin and laminin on DBM. Our data indicate that DBM successfully stimulates the osteoblastic phenotype of osteoblast-like cells and corroborate with the fact that DBM is a considerable natural matrix that promotes fractured-bone healing.
Collapse
Affiliation(s)
- Flavia Oliveira Pinho
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAM, Campinas, SP Brazil
| | - Paulo Pinto Joazeiro
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAM, Campinas, SP Brazil
| | - Arnaldo R Santos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
25
|
Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms222111746. [PMID: 34769175 PMCID: PMC8583713 DOI: 10.3390/ijms222111746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oral and craniofacial bone defects caused by congenital disease or trauma are widespread. In the case of severe alveolar bone defect, autologous bone grafting has been considered a “gold standard”; however, the procedure has several disadvantages, including limited supply, resorption, donor site morbidity, deformity, infection, and bone graft rejection. In the last few decades, bone tissue engineering combined with stem cell-based therapy may represent a possible alternative to current bone augmentation techniques. The number of studies investigating different cell-based bone tissue engineering methods to reconstruct alveolar bone damage is rapidly rising. As an interdisciplinary field, bone tissue engineering combines the use of osteogenic cells (stem cells/progenitor cells), bioactive molecules, and biocompatible scaffolds, whereas stem cells play a pivotal role. Therefore, our work highlights the osteogenic potential of various dental tissue-derived stem cells and induced pluripotent stem cells (iPSCs), the progress in differentiation techniques of iPSCs into osteoprogenitor cells, and the efforts that have been made to fabricate the most suitable and biocompatible scaffold material with osteoinductive properties for successful bone graft generation. Moreover, we discuss the application of stem cell-derived exosomes as a compelling new form of “stem-cell free” therapy.
Collapse
|
26
|
Wang H, Ding X, Liu C, Yang S, Zhao B. An evaluation of allogeneic freeze-dried concentrated growth factors biocompatibility in vitroand in vivo. Biomed Mater 2021; 16. [PMID: 34555823 DOI: 10.1088/1748-605x/ac2995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/23/2021] [Indexed: 11/12/2022]
Abstract
This study evaluated the biocompatibility of allogeneic freeze-dried concentrated growth factors (AFD-CGFs)in vitroandin vivo.For thein vitroexperiments, bone marrow stem cells (BMSCs) were cultured in 10% fresh allogeneic concentrated growth factors (CGFs). AFD-CGF solution was used as the experimental group, and Dulbecco's modified Eagle medium was used as control. Transmission electron microscopy (TEM) showed that the cell ultrastructure was unchanged, and membranes were intact. Scanning electron microscopy, cell counting kit-8, and quantitative polymerase chain reaction indicated that BMSCs and differentiation were unchanged between AFD-CGFs versus control groups (allp> 0.05). Alkaline phosphatase activity was higher in CGF groups (peaked at 14 d) than in the control group. Regarding thein vivoexperiments, four beagles were used for surgery and the rest as controls. Beagles were sacrificed at 2 weeks to observe acute response and membrane absorption; at 12 weeks for wound healing and chronic damage to the liver. According to general observations and histology, the CGFs of all groups were absorbed 2 weeks afterin vivoimplantation. No sign of intolerance was observed. Histology showed a slight increase in immune cells appearing in the implantation area after 2 weeks. However, no or very few inflammatory and immune cells were detected 3 months after the operation. Based on the hematoxylin and eosin staining and TEM results, the ultrastructure of the liver tissue was unchanged. In general, the results suggest that AFD-CGFs are biocompatible and may be a promising option for tissue healing.
Collapse
Affiliation(s)
- Hong Wang
- Department of Stomatology, The Second Affiliated Stomatological Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China
| | - Xiaoling Ding
- Department of Stomatology, General Hospital of the PLA, Beijing 100185, People's Republic of China
| | - Changkui Liu
- Department of Stomatology, Dalian Stomatological Hospital, Dalian 116000, Liaoning, People's Republic of China
| | - Sefei Yang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an 710000, Shanxi, People's Republic of China
| | - Bingjing Zhao
- Department of Stomatology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523710, Guangdong, People's Republic of China.,Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| |
Collapse
|
27
|
Wu CY, Wu TY, Guan ZY, Wang PY, Yang YC, Huang CW, Lin TH, Chen HY. Vapor-phased fabrication and modulation of cell-laden scaffolding materials. Nat Commun 2021; 12:3413. [PMID: 34099701 PMCID: PMC8184845 DOI: 10.1038/s41467-021-23776-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/18/2021] [Indexed: 11/09/2022] Open
Abstract
Bottom-up approaches using building blocks of modules to fabricate scaffolds for tissue engineering applications have enabled the fabrication of structurally complex and multifunctional materials allowing for physical and chemical flexibility to better mimic the native extracellular matrix. Here we report a vapor-phased fabrication process for constructing three-dimensional modulated scaffold materials via simple steps based on controlling mass transport of vapor sublimation and deposition. We demonstrate the fabrication of scaffolds comprised of multiple biomolecules and living cells with built-in boundaries separating the distinct compartments containing defined biological configurations and functions. We show that the fabricated scaffolds have mass production potential. We demonstrate overall >80% cell viability of encapsulated cells and that modulated scaffolds exhibit enhanced cell proliferation, osteogenesis, and neurogenesis, which can be assembled into various geometric configurations. We perform cell co-culture experiments to show independent osteogenesis and angiogenesis activities from separate compartments in one scaffold construct.
Collapse
Affiliation(s)
- Chih-Yu Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ting-Ying Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhen-Yu Guan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Peng-Yuan Wang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yen-Ching Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chao-Wei Huang
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Ghodrat S, Hoseini SJ, Asadpour S, Nazarnezhad S, Alizadeh Eghtedar F, Kargozar S. Stem cell-based therapies for cardiac diseases: The critical role of angiogenic exosomes. Biofactors 2021; 47:270-291. [PMID: 33606893 DOI: 10.1002/biof.1717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Finding effective treatments for cardiac diseases is among the hottest subjects in medicine; cell-based therapies have brought great promises for managing a broad range of life-threatening heart complications such as myocardial infarction. After clarifying the critical role of angiogenesis in tissue repair and regeneration, various stem/progenitor cell were utilized to accelerate the healing of injured cardiac tissue. Embryonic, fetal, adult, and induced pluripotent stem cells have shown the appropriate proangiogenic potential for tissue repair strategies. The capability of stem cells for differentiating into endothelial lineages was initially introduced as the primary mechanism involved in improving angiogenesis and accelerated heart tissue repair. However, recent studies have demonstrated the leading role of paracrine factors secreted by stem cells in advancing neo-vessel formation. Genetically modified stem cells are also being applied for promoting angiogenesis regarding their ability to considerably overexpress and secrete angiogenic bioactive molecules. Yet, conducting further research seems necessary to precisely identify molecular mechanisms behind the proangiogenic potential of stem cells, including the signaling pathways and regulatory molecules such as microRNAs. In conclusion, stem cells' pivotal roles in promoting angiogenesis and consequent improved cardiac healing and remodeling processes should not be ignored, especially in the case of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Sara Ghodrat
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Alizadeh Eghtedar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders. Molecules 2021; 26:molecules26061510. [PMID: 33802011 PMCID: PMC8000171 DOI: 10.3390/molecules26061510] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023] Open
Abstract
The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.
Collapse
|
31
|
Bharadwaz A, Jayasuriya AC. Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111748. [PMID: 33545890 PMCID: PMC7867678 DOI: 10.1016/j.msec.2020.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Bone regeneration using bioactive molecules and biocompatible materials is growing steadily with the advent of the new findings in cellular signaling. Bone Morphogenetic Protein (BMP)-9 is a considerably recent discovery from the BMP family that delivers numerous benefits in osteogenesis. The Smad cellular signaling pathway triggered by BMPs is often inhibited by Noggin. However, BMP-9 is resistant to Noggin, thus, facilitating a more robust cellular differentiation of osteoprogenitor cells into preosteoblasts and osteoblasts. This review encompasses a general understanding of the Smad signaling pathway activated by the BMP-9 ligand molecule with its specific receptors. The robust osteogenic cellular differentiation cue provided by BMP-9 has been reviewed from a bone regeneration perspective with several in vitro as well as in vivo studies reporting promising results for future research. The effect of the biomaterial, chosen in such studies as the scaffold or carrier matrix, on the activity of BMP-9 and subsequent bone regeneration has been highlighted in this review. The non-viral delivery technique for BMP-9 induced bone regeneration is a safer alternative to its viral counterpart. The recent advances in non-viral BMP-9 delivery have also highlighted the efficacy of the protein molecule at a low dosage. This opens a new horizon as a more efficient and safer alternative to BMP-2, which was prevalent among clinical trials; however, BMP-2 applications have reported its downsides during bone defect healing such as cystic bone formation.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
32
|
Effects of icariin on the proliferation and osteogenic differentiation of human amniotic mesenchymal stem cells. J Orthop Surg Res 2020; 15:578. [PMID: 33267896 PMCID: PMC7709318 DOI: 10.1186/s13018-020-02076-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Tissue engineering technology has been applied extensively for clinical research and human amnion mesenchymal stem cells (hAMSCs) could cause mesenchymal stem cells to differentiate into the bone tissue. However, it is necessary to develop and identify the safer appropriate amount of osteogenic inducer. The objective of this study is to investigate the effect of icariin (ICA) on the proliferation and osteogenic differentiation of hAMSCs. Methods The morphology and phenotype of hAMSCs were discovered by flow cytometry and immunocytochemical staining. The osteogenic differentiation of hAMSCs under the influence of different concentrations of ICA were assessed by alkaline phosphatase (ALP) activity substrate assay and alizarin red staining. Results MTT assay revealed that the hAMSCs pretreated with ICA exhibited increased proliferation when compared with the control group, and the most optimum concentration of ICA was 1 × 10− 6 mol/L. The combined analysis of ALP activity and ARS staining showed that ICA could significantly promote the osteogenic differentiation of hAMSCs, and the effect was most significant when the concentration of ICA was 1 × 10− 6 mol/L. Conclusion All the above results implied that ICA could significantly increase proliferation and enhance the osteogenic differentiation of hAMSCs, especially when the concentration of ICA was 1 × 10− 6 mol/L.
Collapse
|
33
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Development of cyclic peptides with potent in vivo osteogenic activity through RaPID-based affinity maturation. Proc Natl Acad Sci U S A 2020; 117:31070-31077. [PMID: 33229551 PMCID: PMC7733813 DOI: 10.1073/pnas.2012266117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis is caused by a disequilibrium between bone resorption and bone formation. Therapeutics for osteoporosis can be divided into antiresorptives that suppress bone resorption and anabolics which increase bone formation. Currently, the only anabolic treatment options are parathyroid hormone mimetics or an anti-sclerostin monoclonal antibody. With the current global increases in demographics at risk for osteoporosis, development of therapeutics that elicit anabolic activity through alternative mechanisms is imperative. Blockade of the PlexinB1 and Semaphorin4D interaction on osteoblasts has been shown to be a promising mechanism to increase bone formation. Here we report the discovery of cyclic peptides by a novel RaPID (Random nonstandard Peptides Integrated Discovery) system-based affinity maturation methodology that generated the peptide PB1m6A9 which binds with high affinity to both human and mouse PlexinB1. The chemically dimerized peptide, PB1d6A9, showed potent inhibition of PlexinB1 signaling in mouse primary osteoblast cultures, resulting in significant enhancement of bone formation even compared to non-Semaphorin4D-treated controls. This high anabolic activity was also observed in vivo when the lipidated PB1d6A9 (PB1d6A9-Pal) was intravenously administered once weekly to ovariectomized mice, leading to complete rescue of bone loss. The potent osteogenic properties of this peptide shows great promise as an addition to the current anabolic treatment options for bone diseases such as osteoporosis.
Collapse
|
35
|
Gao X, Cao Z. Gingiva-derived Mesenchymal Stem Cells and Their Potential Applications in Oral and Maxillofacial Diseases. Curr Stem Cell Res Ther 2020; 15:43-53. [PMID: 31702517 DOI: 10.2174/1574888x14666191107100311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stem cells are undifferentiated cells with multilineage differentiation potential. They can be collected from bone marrow, fat, amniotic fluid, and teeth. Stem cell-based therapies have been widely used to treat multiple diseases, such as cardiac disease, and hematological disorders. The cells may also be beneficial for controlling the disease course and promoting tissue regeneration in oral and maxillofacial diseases. Oral-derived gingival mesenchymal stem cells are easy to access and the donor sites heal rapidly without a scar. Such characteristics demonstrate the beneficial role of GMSCs in oral and maxillofacial diseases. OBJECTIVE We summarize the features of GMSCs, including their self-renewal, multipotent differentiation, immunomodulation, and anti-inflammation properties. We also discuss their applications in oral and maxillofacial disease treatment and tissue regeneration. CONCLUSION GMSCs are easily harvestable adult stem cells with outstanding proliferation, differentiation, and immunomodulation characteristics. A growing body of evidence indicates that GMSCs have strong potential use in accelerating wound healing and promoting the regeneration of bone defects, periodontium, oral neoplasms, salivary glands, peri-implantitis, and nerves. Moreover, alginate, polylactic acid and polycaprolactone can be used as biodegradable scaffolds for GMSC encapsulation. Various growth factors can be applied to the corresponding scaffolds to obtain the desired GMSC differentiation and phenotypes. Three-dimensional spheroid culture systems could optimize GMSC properties and improve the performance of the cells in tissue engineering. The immunomodulatory property of GMSCs in controlling oral and maxillofacial inflammation needs further research.
Collapse
Affiliation(s)
- Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
37
|
Anitua E, Troya M, Zalduendo M, Flores J, Tierno R, Alkhraisat MH. The influence of alveolar bone healing degree on its potential as a source of human alveolar bone-derived cells. Ann Anat 2020; 232:151578. [PMID: 32688020 DOI: 10.1016/j.aanat.2020.151578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The concept of bone tissue engineering has emerged as a novel alternative approach that comprises three essential components: osteogenic cells, osteoinductive signals and osteoconductive scaffolds. The low-speed drilling represents a useful and accessible autologous source for human alveolar bone-derived cells (hABCs). The aim of this study was to compare the efficacy of two donor sites (healing sites (HS) and non-augmented healed sites (NAHS)) as a source of hABCs. METHODS Nineteen patients were enrolled in this study. The patients' demographic data were described. Bone type and dental implant location were also determined. The hABCs obtained were characterized. Apoptosis and sclerostin expression in the samples were also assessed with immunohistochemistry. RESULTS The hABCs left earlier the tissue explants of the HS than the NAHS. The proliferation of the hABCs had reached the sub-confluence stage in both groups. Cellular efficacy was not statistically significant between the two groups. The hABCs exhibited osteogenic phenotype as they expressed bone sialoprotein (BSP), osteopontin (OP) and tissue non-specific alkaline phosphatase (TNAP). In both groups, the level and the distribution pattern of apoptotic cells and sclerostin expression were similar. CONCLUSIONS Within the limitations of this study, both HS and NAHS were similarly effective to provide hABCs.
Collapse
Affiliation(s)
- Eduardo Anitua
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain.
| | - María Troya
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| | - Mar Zalduendo
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| | - Javier Flores
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - Roberto Tierno
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| | - Mohammad Hamdan Alkhraisat
- University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain; BTI - Biotechnology Institute, Vitoria, Spain
| |
Collapse
|
38
|
Gur S, Hellstrom WJ. Harnessing Stem Cell Potential for the Treatment of Erectile Function in Men with Diabetes Mellitus: From Preclinical/Clinical Perspectives to Penile Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:308-320. [DOI: 10.2174/1574888x14666190828142045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Background::
According to the World Health Organization, more than 150 million people
are diabetic, and this number will increase twofold by the year 2025. Diabetes-related complications
affect all body organ systems, including the penis. Diabetes-induced Erectile Dysfunction (ED) is
caused by neuropathy of the penile nerves and vasculopathy involving the smooth muscle and endothelium
of the corpus cavernosum.
Objective::
This study aims to present an overview of Stem Cell (SC) research in diabetic animal models
of ED, focusing on the function, signaling, and niches that have a prominent role in the regeneration
of cavernosal cells and penile tissues. We highlight common erectile pathologies caused by diabetes
and review relevant preclinical trials. We also discuss paracrine mechanisms of various SC therapies
involved in the repair of endothelial cells and cavernous nerves in these diabetic models.
Method::
A PubMed search was performed, with dates ranging from inception until Mar 31, 2019.
Results::
This review provides a comprehensive evaluation of the various strategies that have been
investigated for improving SC delivery methods, through preclinical literature and published clinical
trials regarding ED in men with diabetes. Various cell-type applications have benefited erectile function
in diabetic models of ED.
Conclusion::
This review examines the progress and remaining challenges in diabetes-related SC research
regarding ED. Moving forward, it is only with a combined effort of basic biology and translational
work that the potential of SC-based therapies in diabetes in ED can be realized.
Collapse
Affiliation(s)
- Serap Gur
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Wayne J.G. Hellstrom
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
39
|
Shafaei H, Kalarestaghi H. Adipose-derived stem cells: An appropriate selection for osteogenic differentiation. J Cell Physiol 2020; 235:8371-8386. [PMID: 32239731 DOI: 10.1002/jcp.29681] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.
Collapse
Affiliation(s)
- Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Kalarestaghi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
40
|
An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg 2020; 46:231-244. [PMID: 32078704 PMCID: PMC7113220 DOI: 10.1007/s00068-020-01324-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Electrical stimulation (EStim) has been shown to promote bone healing and regeneration both in animal experiments and clinical treatments. Therefore, incorporating EStim into promising new bone tissue engineering (BTE) therapies is a logical next step. The goal of current BTE research is to develop combinations of cells, scaffolds, and chemical and physical stimuli that optimize treatment outcomes. Recent studies demonstrating EStim's positive osteogenic effects at the cellular and molecular level provide intriguing clues to the underlying mechanisms by which it promotes bone healing. In this review, we discuss results of recent in vitro and in vivo research focused on using EStim to promote bone healing and regeneration and consider possible strategies for its application to improve outcomes in BTE treatments. Technical aspects of exposing cells and tissues to EStim in in vitro and in vivo model systems are also discussed.
Collapse
Affiliation(s)
- Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany.
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
42
|
Abbasi N, Ivanovski S, Gulati K, Love RM, Hamlet S. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater Res 2020; 24:2. [PMID: 31911842 PMCID: PMC6942301 DOI: 10.1186/s40824-019-0180-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cell-scaffold based therapies have the potential to offer an efficient osseous regenerative treatment and PCL has been commonly used as a scaffold, however its effectiveness is limited by poor cellular retention properties. This may be improved through a porous scaffold structure with efficient pore arrangement to increase cell entrapment. To facilitate this, melt electrowriting (MEW) has been developed as a technique able to fabricate cell-supporting scaffolds with precise micro pore sizes via predictable fibre deposition. The effect of the scaffold's architecture on cellular gene expression however has not been fully elucidated. METHODS The design and fabrication of three different uniform pore structures (250, 500 and 750 μm), as well as two offset scaffolds with different layout of fibres (30 and 50%) and one complex scaffold with three gradient pore sizes of 250-500 - 750 μm, was performed by using MEW. Calcium phosphate modification was applied to enhance the PCL scaffold hydrophilicity and bone inductivity prior to seeding with osteoblasts which were then maintained in culture for up to 30 days. Over this time, osteoblast cell morphology, matrix mineralisation, osteogenic gene expression and collagen production were assessed. RESULTS The in vitro findings revealed that the gradient scaffold significantly increased alkaline phosphatase activity in the attached osteoblasts while matrix mineralization was higher in the 50% offset scaffolds. The expression of osteocalcin and osteopontin genes were also upregulated compared to other osteogenic genes following 30 days culture, particularly in offset and gradient scaffold structures. Immunostaining showed significant expression of osteocalcin in offset and gradient scaffold structures. CONCLUSIONS This study demonstrated that the heterogenous pore sizes in gradient and fibre offset PCL scaffolds prepared using MEW significantly improved the osteogenic potential of osteoblasts and hence may provide superior outcomes in bone regeneration applications.
Collapse
Affiliation(s)
- Naghmeh Abbasi
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Herston Campus, St Lucia, Queensland 4072 Australia
| | - Karan Gulati
- School of Dentistry, University of Queensland, Herston Campus, St Lucia, Queensland 4072 Australia
| | - Robert M. Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Stephen Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| |
Collapse
|
43
|
Swetha S, Lavanya K, Sruthi R, Selvamurugan N. An insight into cell-laden 3D-printed constructs for bone tissue engineering. J Mater Chem B 2020; 8:9836-9862. [DOI: 10.1039/d0tb02019b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we have spotlighted various combinations of bioinks to optimize the biofabrication of 3D bone constructs.
Collapse
Affiliation(s)
- S. Swetha
- Department of Biotechnology, College of Engineering and Technology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| | - K. Lavanya
- Department of Biotechnology, College of Engineering and Technology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| | - R. Sruthi
- Department of Biotechnology, College of Engineering and Technology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| | - N. Selvamurugan
- Department of Biotechnology, College of Engineering and Technology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| |
Collapse
|
44
|
Wang YQ, Wang NX, Luo Y, Yu CY, Xiao JH. Ganoderal A effectively induces osteogenic differentiation of human amniotic mesenchymal stem cells via cross-talk between Wnt/β-catenin and BMP/SMAD signaling pathways. Biomed Pharmacother 2019; 123:109807. [PMID: 31896066 DOI: 10.1016/j.biopha.2019.109807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Osteogenic inducers play central roles in effective stem cell-based treatment of bone defects/losses. However, the current routine osteogenic inducer is a cocktail comprising three components that must be improved due to low induction efficiency and side effects. Therefore, there is an urgent need to develop safer and more effective osteoinducers. Herein, we demonstrated the osteogenic effect of Ganoderal A (GD-A), a tetracyclic triterpenoid compound from Ganoderma lucidum. GD-A showed no cytotoxicity toward human amniotic mesenchymal stem cells (hAMSCs) at doses of 0.001-10 μM; furthermore, 0.01 μM GD-A significantly induced the generation of osteoblast-specific markers, such as alkaline phosphatase, and calcium deposition in hAMSCs. At molecular levels, GD-A promoted the expression of multiple osteoblast differentiation markers, such as RUNX2, OSX, OPN, ALP, OCN, and COL1α1. Both Wnt/β-catenin and BMP/SMAD signaling were shown as active during hAMSC osteodifferentiation. Furthermore, specific blocking of both signals by KYA1797K and SB431542 significantly inhibited alkaline phosphatase secretion and RUNX2 and ALP expression when used alone or in combination. Meanwhile, both signals were also blocked. These findings suggest that GD-A induces hAMSC differentiation into osteoblasts through signaling cross-talk between Wnt/β-catenin and BMP/SMAD. Taken together, GD-A is a safe, effective, and novel osteoinducer and might be used for stem cell-based therapy for bone defects/losses.
Collapse
Affiliation(s)
- Yi-Qing Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Nuo-Xin Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yi Luo
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| | - Jian-Hui Xiao
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
45
|
Wilkesmann S, Fellenberg J, Nawaz Q, Reible B, Moghaddam A, Boccaccini AR, Westhauser F. Primary osteoblasts, osteoblast precursor cells or osteoblast‐like cell lines: Which human cell types are (most) suitable for characterizing 45S5‐bioactive glass? J Biomed Mater Res A 2019; 108:663-674. [DOI: 10.1002/jbm.a.36846] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sebastian Wilkesmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury Heidelberg University Hospital Heidelberg Germany
| | - Jörg Fellenberg
- Center of Orthopedics, Traumatology, and Spinal Cord Injury Heidelberg University Hospital Heidelberg Germany
| | - Qaisar Nawaz
- Institute of Biomaterials University of Erlangen‐Nuremberg Erlangen Germany
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury Heidelberg University Hospital Heidelberg Germany
| | - Arash Moghaddam
- ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine Klinikum Aschaffenburg‐Alzenau Aschaffenburg Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials University of Erlangen‐Nuremberg Erlangen Germany
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury Heidelberg University Hospital Heidelberg Germany
| |
Collapse
|
46
|
Kargozar S, Lotfibakhshaeish N, Ebrahimi-Barough S, Nazari B, Hill RG. Stimulation of Osteogenic Differentiation of Induced Pluripotent Stem Cells (iPSCs) Using Bioactive Glasses: An in vitro Study. Front Bioeng Biotechnol 2019; 7:355. [PMID: 31850324 PMCID: PMC6901961 DOI: 10.3389/fbioe.2019.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Selection and use of an optimal cell source for bone tissue engineering (BTE) remain a challenging issue; the invention of induced pluripotent stem cells (iPSCs) have created new hopes on this regard. At the present study, we attempted to show the usability of iPSCs in combination with bioactive glasses (BGs) for bone regeneration applications. For this aim, iPSCs were cultured and incubated with the strontium and cobalt-containing BGs for different intervals (1, 5, and 7 days). The cell cytotoxicity and attachment were assessed using MTT assay and scanning electron microscopy (SEM), respectively. Moreover, the osteogenic differentiation of iPSCs seeded onto the glasses was evaluated using alkaline phosphatase (ALP) activity assay and real-time PCR. The obtained results clarified that although the cell viability is decreased during a 7 day period, the iPSCs could adhere and expand onto the BGs particles and over-express the osteogenic markers, including osteocalcin, osteonectin, and Runx2. Based on the data, we conclude that iPSCs in a combination of BGs can be considered as a potential candidate for BTE strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Lotfibakhshaeish
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Robert G. Hill
- Unit of Dental Physical Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
47
|
Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. Stem Cells Int 2019; 2019:3673857. [PMID: 31781238 PMCID: PMC6875209 DOI: 10.1155/2019/3673857] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose stem cells (ASCs) are a crucial element in bone tissue engineering (BTE). They are easy to harvest and isolate, and they are available in significative quantities, thus offering a feasible and valid alternative to other sources of mesenchymal stem cells (MSCs), like bone marrow. Together with an advantageous proliferative and differentiative profile, they also offer a high paracrine activity through the secretion of several bioactive molecules (such as growth factors and miRNAs) via a sustained exosomal release which can exert efficient conditioning on the surrounding microenvironment. BTE relies on three key elements: (1) scaffold, (2) osteoprogenitor cells, and (3) bioactive factors. These elements have been thoroughly investigated over the years. The use of ASCs has offered significative new advancements in the efficacy of each of these elements. Notably, the phenotypic study of ASCs allowed discovering cell subpopulations, which have enhanced osteogenic and vasculogenic capacity. ASCs favored a better vascularization and integration of the scaffolds, while improvements in scaffolds' materials and design tried to exploit the osteogenic features of ASCs, thus reducing the need for external bioactive factors. At the same time, ASCs proved to be an incredible source of bioactive, proosteogenic factors that are released through their abundant exosome secretion. ASC exosomes can exert significant paracrine effects in the surroundings, even in the absence of the primary cells. These paracrine signals recruit progenitor cells from the host tissues and enhance regeneration. In this review, we will focus on the recent discoveries which have involved the use of ASCs in BTE. In particular, we are going to analyze the different ASCs' subpopulations, the interaction between ASCs and scaffolds, and the bioactive factors which are secreted by ASCs or can induce their osteogenic commitment. All these advancements are ultimately intended for a faster translational and clinical application of BTE.
Collapse
|
48
|
Kargozar S, Montazerian M, Fiume E, Baino F. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Front Bioeng Biotechnol 2019; 7:161. [PMID: 31334228 PMCID: PMC6625228 DOI: 10.3389/fbioe.2019.00161] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Improving and accelerating bone repair still are partially unmet needs in bone regenerative therapies. In this regard, strontium (Sr)-containing bioactive glasses (BGs) are highly-promising materials to tackle this challenge. The positive impacts of Sr on the osteogenesis makes it routinely used in the form of strontium ranelate (SR) in the clinical setting, especially for patients suffering from osteoporosis. Therefore, a large number of silicate-, borate-, and phosphate-based BGs doped with Sr and produced in different shapes have been developed and characterized, in order to be used in the most advanced therapeutic strategies designed for the management of bone defects and injuries. Although the influence of Sr incorporation in the glass is debated regarding the obtained physicochemical and mechanical properties, the biological improvements have been found to be substantial both in vitro and in vivo. In the present study, we provide a comprehensive overview of Sr-containing glasses along with the current state of their clinical use. For this purpose, different types of Sr-doped BG systems are described, including composites, coatings and porous scaffolds, and their applications are discussed in the light of existing experimental data along with the significant challenges ahead.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Montazerian
- Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, Brazil
| | - Elisa Fiume
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| |
Collapse
|
49
|
Alicka M, Sobierajska P, Kornicka K, Wiglusz R, Marycz K. Lithium ions (Li+) and nanohydroxyapatite (nHAp) doped with Li+ enhance expression of late osteogenic markers in adipose-derived stem cells. Potential theranostic application of nHAp doped with Li+ and co-doped with europium (III) and samarium (III) ions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1257-1273. [DOI: 10.1016/j.msec.2019.02.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
50
|
Electrospin-Coating of Paper: A Natural Extracellular Matrix Inspired Design of Scaffold. Polymers (Basel) 2019; 11:polym11040650. [PMID: 30970647 PMCID: PMC6523310 DOI: 10.3390/polym11040650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Paper has recently found widespread applications in biomedical fields, especially as an alternative scaffolding material for cell cultures, owing to properties such as its fibrous nature, porosity and flexibility. However, paper on its own is not an optimal material for cell cultures as it lacks adhesion moieties specific to mammalian cells, and modifications such as hydrogel integration and chemical vapor deposition are necessary to make it a favorable scaffolding material. The present study focuses on modification of filter paper through electrospin-coating and dip-coating with polycaprolactone (PCL), a promising biomaterial in tissue engineering. Morphological analysis, evaluation of cell viability, alkaline phosphatase (ALP) activity and live/dead assays were conducted to study the potential of the modified paper-based scaffold. The results were compared to filter paper (FP) and electrospun PCL (ES-PCL) as reference samples. The results indicate that electrospin-coating paper is a simple and efficient way of modifying FP. It not only improves the morphology of the deposited electrospun layer through reduction of the fiber diameter by nearly 75%, but also greatly reduces the scaffold fabrication time compared to ES-PCL. The biochemical assays (Resazurin and ALP) indicate that electrospin-coated filter paper (ES-PCL/FP) provides significantly higher readings compared to all other groups. The live/dead results also show improved cell-distribution and cell-scaffold attachment all over the ES-PCL/FP.
Collapse
|