1
|
Abd-Allah H, Abdel Jaleel GA, Hassan A, El Madani M, Nasr M. Ferulic acid nanoemulsion as a promising anti-ulcer tool: in vitro and in vivo assessment. Drug Dev Ind Pharm 2024; 50:460-469. [PMID: 38602337 DOI: 10.1080/03639045.2024.2341786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE Ferulic acid (FA) is a promising nutraceutical molecule which exhibits antioxidant and anti-inflammatory properties, but it suffers from poor solubility and bioavailability. In the presented study, FA nanoemulsions were prepared to potentiate the therapeutic efficacy of FA in prevention of gastric ulcer. METHODS FA nanoemulsions were prepared, pharmaceutically characterized, and the selected nanoemusion was tested for its ulcer-ameliorative properties in rats after induction of gastric ulcer using ethanol, by examination of stomach tissues, assessment of serum IL-1β and TNF-α, assessment of nitric oxide, prostaglandin E2, glutathione, catalase and thiobarbituric acid reactive substance in stomach homogenates, as well as histological and immunohistochemical evaluation. RESULTS Results revealed that the selected FA nanoemulsion showed a particle size of 90.43 nm, sustained release of FA for 8 h, and better in vitro anti-inflammatory properties than FA. Moreover, FA nanoemulsion exhibited significantly better anti-inflammatory and antioxidant properties in vivo, and the gastric tissue treated with FA nanoemulsion was comparable to the normal control upon histological and immunohistochemical evaluation. CONCLUSION Findings suggest that the prepared ferulic acid nanoemulsion is an ideal anti-ulcer system, which is worthy of further investigations.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| |
Collapse
|
2
|
Lisiecka K, Dziki D, Gawlik-Dziki U, Świeca M, Różyło R. Influence of Soluble Fiber as a Carrier on Antioxidant and Physical Properties of Powders Produced Based on the Spray Drying of Malvae arboreae flos Aqueous Extracts. Foods 2023; 12:3363. [PMID: 37761072 PMCID: PMC10527584 DOI: 10.3390/foods12183363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to assess the impact of inulin and pectin, wherein pectin replaced inulin with weight ranging from 2% to 8%, as wall materials on various aspects: bioactive component content, antioxidant and anti-inflammatory properties, bioavailability, powder recovery during the drying process, and selected physical characteristics of powders derived from Malvae arboreae flos aqueous extracts obtained through spray drying. Powders containing a soluble fraction of fiber demonstrated a recovery efficiency of over 50% during drying, along with low moisture content, water activity, and hygroscopicity, coupled with high solubility. The incorporation of pectin up to 8% did not significantly alter the color profile of the powders. However, at levels of 4% to 8% pectin, concave distortions and particle morphology cracks became noticeable, along with the potential to form agglomerates (evident when the span index ranged between 5.11 and 14.51). The substitution of inulin with pectin led to higher total contents of flavonoids (from 1.31% to 49.57% before digestion, and from 18.92% to 36.48% after digestion) and anthocyanins (from 45.79% to 78.56% before digestion, and from 65.45% to 521.81% after digestion) compared to samples containing only inulin as a carrier. Bioacceptability values exceeding 100% indicated effective preservation of compounds responsible for ferric-reducing antioxidant power, as well as the inhibition of xanthine oxidase and cyclooxygenase-2 across all samples.
Collapse
Affiliation(s)
- Katarzyna Lisiecka
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka St. 31, 20-612 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland (U.G.-D.)
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka St. 28, 20-612 Lublin, Poland
| |
Collapse
|
3
|
The wastes of coffee bean processing for utilization in food: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:429-444. [PMID: 35185168 PMCID: PMC8814275 DOI: 10.1007/s13197-021-05032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/03/2023]
Abstract
A few million cubic tons of waste are generated annually as a result of coffee processing. As a beverage, coffee in itself is a rich source of melanoidins, phenolic compounds, and other phytonutrients which confer a wide range of health benefits. These wastes generated every year are usually discarded as landfill mass, mixed with animal fodder, or incinerated. Coffee wastes, due to their high content of tannins and caffeine, can degrade the soil quality and induce carcinogenicity when mixed with animal fodder. This review aims to identify the potential of coffee silver skin and spent coffee grounds, both generated as a result of the roasting process and instantization processes. Coffee husk and coffee flour are also well-known for their excellent bioactive roles. The proximate composition of coffee silverskin indicates a rich dietary fibre source and finds wide applications in bakery and other allied food products. This process could generate a value-added product and alleviate the disposing quality of remnant spent coffee grounds. Companies are exploring novel ideas of producing coffee flour obtained from drying and milling of coffee cherries for applications in day-to-day food products. Coffee and coffee waste combined with its high concentration of fibre, colorant pigments, and antioxidant compounds, has immense potential as a functional ingredient in food systems and needs to be explored further for its better utilization.
Collapse
|
4
|
Silva CT, Souza MC, Machado APDF, Nascimento RDP, Cunha DT, Bezerra RMN, Rostagno MA. Thermal stability and sensory evaluation of a bioactive extract from roasted coffee (
Coffea arabica
) beans added at increasing concentrations to conventional bread. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Camila Telles Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| | - Mariana Corrêa Souza
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| | | | | | - Diogo Thimoteo Cunha
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS) School of Applied Sciences (FCA) University of Campinas (UNICAMP) Limeira Brazil
| |
Collapse
|
5
|
Habza-Kowalska E, Kaczor AA, Bartuzi D, Piłat J, Gawlik-Dziki U. Some Dietary Phenolic Compounds Can Activate Thyroid Peroxidase and Inhibit Lipoxygenase-Preliminary Study in the Model Systems. Int J Mol Sci 2021; 22:ijms22105108. [PMID: 34065957 PMCID: PMC8151655 DOI: 10.3390/ijms22105108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/05/2023] Open
Abstract
The presented research concerns the triple activity of trans-cinnamic (tCA), ferulic (FA) and syringic acids (SA). They act as thyroid peroxidase (TPO) activators, lipoxygenase (LOX) inhibitors and show antiradical activity. All compounds showed a dose-dependent TPO activatory effect, thus the AC50 value (the concentration resulting in 50% activation) was determined. The tested compounds can be ranked as follows: tCA > FA > SA with AC50 = 0.10, 0.39, 0.69 mM, respectively. Strong synergism was found between FA and SA. The activatory effects of all tested compounds may result from interaction with the TPO allosteric site. It was proposed that conformational change resulting from activator binding to TPO allosteric pocket results from the flexibility of a nearby loop formed by residues Val352-Tyr363. All compounds act as uncompetitive LOX inhibitors. The most effective were tCA and SA, whereas the weakest was FA (IC50 = 0.009 mM and IC50 0.027 mM, respectively). In all cases, an interaction between the inhibitors carboxylic groups and side-chain atoms of Arg102 and Arg139 in an allosteric pocket of LOX was suggested. FA/tCA and FA/SA acted synergistically, whereas tCA/SA demonstrated antagonism. The highest antiradical activity was found in the case of SA (IC50 = 0.22 mM). FA/tCA and tCA/SA acted synergistically, whereas antagonism was found for the SA/FA mixture.
Collapse
Affiliation(s)
- Ewa Habza-Kowalska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (A.A.K.); (D.B.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (A.A.K.); (D.B.)
| | - Jacek Piłat
- Department of General Surgery, Transplantology and Clinical Nutrition, Medical University of Lublin, Jaczewskiego Str. 8, 20-090 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
- Correspondence:
| |
Collapse
|
6
|
Gawlik-Dziki U, Sugier P, Dziki D, Sugier D, Pecio Ł. Water Soldier Stratiotes aloides L.-Forgotten Famine Plant With Unique Composition and Antioxidant Properties. Molecules 2020; 25:molecules25215065. [PMID: 33142839 PMCID: PMC7662255 DOI: 10.3390/molecules25215065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
Stratiotes aloides L. is common water plant in central Poland. Due to its expansive character, S. aloides L. can strongly affect the functioning of aquatic ecosystems. S. aloides L. was an important famine plant in central Poland. This plant was commonly collected and cooked until the turn of the 20th century. It has also been used to heal wounds, especially when these are made by an iron implement. The objective of the present work was to study the phenolic profile in the leaves and roots of S. aloides as well as their antioxidant potential and ability to inhibit lipoxygenase (LOX) in the light of their potential bioaccessibility. The dominant compound in its leaves was luteolin-7-O-hexoside-glucuronide (5.84 mg/g DW), whereas the dominant root component was chrysoeriol-7-O-hexoside-glucuronide (0.83 mg/g DW). Infusions from leaves, roots, and their 1:1 (v/v) mixture contained potentially bioaccessible antiradical compounds. S. aloides is a good source of water-extractable reductive compounds. Especially valuable are the leaves of this plant. The roots of S. aloides contained very active hydrophilic compounds able to chelate metal ions. However, their potential bioaccessibility was relatively low. The hydrophilic compounds from the leaves were the most effective XO inhibitors (EC50 = 9.91 mg DW/mL). The water-extractable compounds derived from the leaves and roots acted as uncompetitive LOX inhibitors.
Collapse
Affiliation(s)
- Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland
- Correspondence:
| | - Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Str., 20-033 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich Str. 8, 24-100 Pulawy, Poland;
| |
Collapse
|
7
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Mazumder K, Nabila A, Aktar A, Farahnaky A. Bioactive Variability and In Vitro and In Vivo Antioxidant Activity of Unprocessed and Processed Flour of Nine Cultivars of Australian lupin Species: A Comprehensive Substantiation. Antioxidants (Basel) 2020; 9:E282. [PMID: 32230703 PMCID: PMC7222189 DOI: 10.3390/antiox9040282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this present investigation was to analyze bioactive compounds, as well as demonstrate the antioxidant activities of nine cultivars of Australian lupin species accompanied by observing the effect of domestic heat processing on their antioxidant activities adopting in vivo and in vitro approaches. Gas chromatography mass spectroscopy (GC-MS) analysis was performed for profiling bioactive compounds present in lupin cultivars. Multiple assay techniques involving quantification of polyphenolics, flavonoids and flavonol, electron transfer (ET) based assay, hydrogen atom transfer (HAT)-based assay and in vivo assays were performed. The major compounds found were hexadecanoic acid methyl ester, 9,12-octadecadienoic acid methyl ester, methyl stearate, lupanine,13-docosenamide and 11-octadecenoic acid (Z)- methyl ester. Mandelup was found to show excellent antioxidant activity. Moreover, Jurien, Gunyidi and Barlock had strong antioxidant activity. Both positive and negative impacts of heat processing were observed on antioxidant activity. Heating and usage of excess water during processing were the key determinants of loss of antioxidants. Negligible loss of antioxidant activity was observed in most of the assays whereas inhibition of both lipid peroxidation (33.53%) and hemolysis of erythrocytes (37.75%) were increased after processing. In addition, in vitro and in vivo antioxidant assays are found to show statistically significant (* p < 0.05 and ** p < 0.01) results, which are supported by the presence of a number of antioxidant compounds in GC-MS analysis.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga NSW 2127, Australia
| | - Afia Nabila
- Department of Pharmacy, Faculty of Basic Medicine and Health Sciences, University of Science and Technology Chittagong, Foy's Lake, Chittagong 4202, Bangladesh
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Asgar Farahnaky
- School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma St, Wagga Wagga NSW 2127, Australia
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne VIC 3083, Australia
| |
Collapse
|
9
|
Habza-Kowalska E, Gawlik-Dziki U, Dziki D. Mechanism of Action and Interactions between Thyroid Peroxidase and Lipoxygenase Inhibitors Derived from Plant Sources. Biomolecules 2019; 9:biom9110663. [PMID: 31671724 PMCID: PMC6920844 DOI: 10.3390/biom9110663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022] Open
Abstract
This study focused on the effect of kaempferol, catechin, apigenin, sinapinic acid, and extracts from plants (i.e., parsley, cumin, mustard, green tea, and green coffee) on thyroid peroxidase (TPO) and lipoxygenase (LOX) activity, antiradical potential, as well as the result of interactions among them. Catechin, sinapinic acid, and kaempferol acted as a competitive TPO inhibitors, while apigenin demonstrated an uncompetitive mode of inhibitory action. Ethanol extracts from all plants acted as competitive TPO inhibitors, while, after in vitro digestion, TPO activation was found especially in the case of mustard (24%) and cumin (19.85%). Most importantly, TPO activators acted synergistically. The TPO effectors acted as LOX inhibitors. The most effective were potentially bioaccessible compounds from green tea and green coffee (IC50 = 29.73 mg DW/mL and 30.43 mg DW/mL, respectively). The highest free radical scavenging ability was determined for catechin and sinapinic acid (IC50 = 78.37 µg/mL and 84.33 µg/mL, respectively) and potentially bioaccessible compounds from mustard (0.42 mg DW/mL) and green coffee (0.87 mg DW/mL). Green coffee, green tea, cumin, and mustard contain potentially bioaccessible TPO activators that also act as effective LOX inhibitors, which indicate their potentially health-promoting effects for people suffering from Hashimoto's disease.
Collapse
Affiliation(s)
- Ewa Habza-Kowalska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland.
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland.
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences, Głęboka 31, 20-612 Lublin, Poland.
| |
Collapse
|
10
|
Phenolic Profiling and Biological Potential of Ficus curtipes Corner Leaves and Stem Bark: 5-Lipoxygenase Inhibition and Interference with NO Levels in LPS-Stimulated RAW 264.7 Macrophages. Biomolecules 2019; 9:biom9090400. [PMID: 31443459 PMCID: PMC6770299 DOI: 10.3390/biom9090400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 01/14/2023] Open
Abstract
The economic value of fig trees has been globally acknowledged due to their utilization in the food industry, being also frequently used in traditional medicine. While ubiquitously distributed in Southeast Asia, Ficus curtipes Corner remains uninvestigated concerning its biological properties and chemical profile. HPLC-DAD-ESI/MSn characterization of methanol extracts obtained from the stem bark and leaves allowed the identification and quantitation of 21 phenolic compounds for the first time; the stem bark was predominantly rich in flavan-3-ols and apigenin derivatives, while solely apigenin-di-glycosides have been identified and quantitated on the leaf extract. Both extracts inhibited 5-lipoxygenase (5-LOX) activity in a concentration-dependent manner, the one obtained from the stem bark being significantly more active (IC50 = 10.75 μg/mL). The effect of both extracts on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages was evaluated, and while the stem bark extract did not lead to a noticeable interference on nitric oxide (NO) levels, the extract obtained from the leaves notably decreased NO and L-citrulline levels at concentrations ranging from 250 to 500 μg/mL. Herein, F. curtipes is valorized due to its modulatory effects on inflammatory mediators and also as a source of bioactive phenols, which may fuel further studies on the development of nutraceuticals.
Collapse
|
11
|
Habza-Kowalska E, Kaczor AA, Żuk J, Matosiuk D, Gawlik-Dziki U. Thyroid Peroxidase Activity is Inhibited by Phenolic Compounds-Impact of Interaction. Molecules 2019; 24:E2766. [PMID: 31366075 PMCID: PMC6696198 DOI: 10.3390/molecules24152766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to estimate the mode of thyroid peroxidase (TPO) inhibition by polyphenols: Chlorogenic acid, rosmarinic acid, quercetin, and rutin. All the tested polyphenols inhibited TPO; the IC50 values ranged from 0.004 mM to 1.44 mM (for rosmarinic acid and rutin, respectively). All these pure phytochemical substances exhibited different modes of TPO inhibition. Rutin and rosmarinic acid showed competitive, quercetin-uncompetitive and chlorogenic acid-noncompetitive inhibition effect on TPO. Homology modeling was used to gain insight into the 3D structure of TPO and molecular docking was applied to study the interactions of the inhibitors with their target at the molecular level. Moreover, the type and strength of mutual interactions between the inhibitors (expressed as the combination index, CI) were analyzed. Slight synergism, antagonism, and moderate antagonism were found in the case of the combined addition of the pure polyphenols. Rutin and quercetin as well as rutin and rosmarinic acid acted additively (CI = 0.096 and 1.06, respectively), while rutin and chlorogenic acid demonstrated slight synergism (CI = 0.88) and rosmarinic acid with quercetin and rosmarinic acid with chlorogenic acid showed moderate antagonism (CI = 1.45 and 1.25, respectively). The mixture of chlorogenic acid and quercetin demonstrated antagonism (CI = 1.79). All the polyphenols showed in vitro antiradical ability against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), ABTS. The highest ability (expressed as IC50) was exhibited by rosmarinic acid (0.12 mM) and the lowest value was ascribed to quercetin (0.45 mM).
Collapse
Affiliation(s)
- Ewa Habza-Kowalska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Justyna Żuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland.
| |
Collapse
|