1
|
Di Nisio V, Antonouli S, Colafarina S, Zarivi O, Rossi G, Cecconi S, Poma AMG. Repeated Rounds of Gonadotropin Stimulation Induce Imbalance in the Antioxidant Machinery and Activation of Pro-Survival Proteins in Mouse Oviducts. Int J Mol Sci 2023; 24:ijms24119294. [PMID: 37298244 DOI: 10.3390/ijms24119294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Controlled ovarian stimulation (COS) through gonadotropin administration has become a common procedure in assisted reproductive technologies. COS's drawback is the formation of an unbalanced hormonal and molecular environment that could alter several cellular mechanisms. On this basis, we detected the presence of mitochondrial DNA (mtDNA) fragmentation, antioxidant enzymes (catalase; superoxide dismutases 1 and 2, SOD-1 and -2; glutathione peroxidase 1, GPx1) and apoptotic (Bcl-2-associated X protein, Bax; cleaved caspases 3 and 7; phosphorylated (p)-heat shock protein 27, p-HSP27) and cell-cycle-related proteins (p-p38 mitogen-activated protein kinase, p-p38 MAPK; p-MAPK activated protein kinase 2, p-MAPKAPK2; p-stress-activated protein kinase/Jun amino-terminal kinase, p-SAPK/JNK; p-c-Jun) in the oviducts of unstimulated (Ctr) and repeatedly hyperstimulated (eight rounds, 8R) mice. While all the antioxidant enzymes were overexpressed after 8R of stimulation, mtDNA fragmentation decreased in the 8R group, denoting a present yet controlled imbalance in the antioxidant machinery. Apoptotic proteins were not overexpressed, except for a sharp increase in the inflammatory-related cleaved caspase 7, accompanied by a significant decrease in p-HSP27 content. On the other hand, the number of proteins involved in pro-survival mechanisms, such as p-p38 MAPK, p-SAPK/JNK and p-c-Jun, increased almost 50% in the 8R group. Altogether, the present results demonstrate that repeated stimulations cause the activation of the antioxidant machinery in mouse oviducts; however, this is not sufficient to induce apoptosis, and is efficiently counterbalanced by activation of pro-survival proteins.
Collapse
Affiliation(s)
- Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | - Sevastiani Antonouli
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, PC-45110 Ioannina, Greece
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | |
Collapse
|
2
|
Abstract
Many studies have focused on the optimization of the composition of embryo culture medium; however, there are few studies involving the effect of a culture medium changing procedure on the preimplantation development of embryos. In this study, three groups were designed: a non-renewal group, a renewal group and a half-renewal group. The levels of reactive oxygen species (ROS), apoptotic index, blastocyst ratio and blastocyst total cell number were analyzed in each group. The results showed that the ROS level and the apoptotic index of blastocyst in the non-renewal group were significantly higher than in the renewal group and the half-renewal group (P < 0.05). The blastocyst ratio and blastocyst total cell number were significantly higher in the half-renewal group than that in non-renewal group and the renewal group (P < 0.05). These results demonstrated that the procedure of changing the culture medium influenced ROS level, apoptotic index, blastocyst ratio and total cell number of blastocysts. In addition, the result suggested that changing the culture medium may lead to a loss of important regulatory factors for embryos, while not changing the culture medium may lead to the accumulation of toxic substances. Half-renewal can alleviate the defects of both no renewal and renewal, and benefit embryo development. This study will be of high value as a reference for the optimization of embryo culture in vitro, and is very significant for assisted reproduction.
Collapse
|
3
|
Isaguliants M, Krasnyak S, Smirnova O, Colonna V, Apolikhin O, Buonaguro FM. Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection. Infect Agent Cancer 2021; 16:29. [PMID: 33971936 PMCID: PMC8111735 DOI: 10.1186/s13027-021-00368-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.
Collapse
Affiliation(s)
- Maria Isaguliants
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia. .,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia. .,Riga Stradiņs University, Riga, Latvia. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Stepan Krasnyak
- Research Institute of Urology and Interventional Radiology named after N.A. Lopatkin, Moscow, Russia
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedecine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vincenza Colonna
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Oleg Apolikhin
- Research Institute of Urology and Interventional Radiology named after N.A. Lopatkin, Moscow, Russia
| | | |
Collapse
|
4
|
Female Fertility and Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238802. [PMID: 33256215 PMCID: PMC7730072 DOI: 10.3390/ijerph17238802] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
A realistic picture of our world shows that it is heavily polluted everywhere. Coastal regions and oceans are polluted by farm fertilizer, manure runoff, sewage and industrial discharges, and large isles of waste plastic are floating around, impacting sea life. Terrestrial ecosystems are contaminated by heavy metals and organic chemicals that can be taken up by and accumulate in crop plants, and water tables are heavily contaminated by untreated industrial discharges. As deadly particulates can drift far, poor air quality has become a significant global problem and one that is not exclusive to major industrialized cities. The consequences are a dramatic impairment of our ecosystem and biodiversity and increases in degenerative or man-made diseases. In this respect, it has been demonstrated that environmental pollution impairs fertility in all mammalian species. The worst consequences are observed for females since the number of germ cells present in the ovary is fixed during fetal life, and the cells are not renewable. This means that any pollutant affecting hormonal homeostasis and/or the reproductive apparatus inevitably harms reproductive performance. This decline will have important social and economic consequences that can no longer be overlooked.
Collapse
|
5
|
Dua D, Tripathi G, Alam A, Chauhan MS, Palta P, Singh MK. Optimization and Comparison of Three-Dimensional Culture Conditions in Different Media of Coculture and Encapsulation System for In Vitro Follicular Development in Bubalus bubalis. Cell Reprogram 2020; 23:26-34. [PMID: 33147076 DOI: 10.1089/cell.2020.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The establishment of an in vitro culture system for complete oocyte maturation from the early stages of ovarian follicles is still a challenge. The aim of the present study was to assess the effect of different matrix with different culture media on the developmental growth of ovarian follicles in vitro. An ovarian histoarchitectural study was carried out to identify the primordial (0.027-0.039 mm), primary (0.041-0.079 mm), small preantral (0.085-0.131 mm), large preantral (0.132-0.294 mm), small antral (0.387-0.589 mm), and large antral (1.188-1.366 mm) follicles. Thus, large preantral follicles (0.2-0.3 mm) were mechanically isolated and cultured subsequently in different microconditions such as Dulbecco's modified Eagle's medium, Tissue Culture Medium-199 (TCM-199) and Opti-minimum essential medium, with same supplements where control (without matrix) was compared with matrix (coculture and encapsulation), which includes (1) buffalo fetal fibroblast cells, (2) cumulus cells, (3) ovarian mesenchymal cells, (4) collagen, (5) gelatin, and (6) Matrigel, cultured for 7 days in CO2 incubator at 38.5°C (5% CO2 in air). Cultured follicles were evaluated for growth rate (107.88% ± 10.24%), maturation rate (51.06% ± 6.53%), survivability rate (56.52% ± 3.42%), and antioxidant (catalase; CAT [1.58 ± 0.04 U/mg], superoxide dismutase; SOD [4.63 ± 0.05 U/mg], lactate dehydrogenase; LDH [1.48 ± 0.01 U/mg]) enzymatic activities, which showed significantly (p < 0.05) positive results in growth model with media TCM-199 than other studied groups. Furthermore, the development of large preantral follicles augmented significantly (p < 0.05) for growth rate (248.54% ± 9.51%), maturation rate (75.81% ± 7.07%), survivability rate (81.82% ± 3.02%), antioxidant (CAT [2.05 ± 0.03 U/mg], SOD [3.13 ± 0.12 U/mg], LDH [2.55 ± 0.51 U/mg]), and estradiol (175.83 ± 5.92 pg/mL) activities when they were encapsulated in Matrigel with nutritional requirements fulfilled by media TCM-199. These results provide better insight for the optimization of culture conditions for in vitro follicular development in the water buffalo, which will eventually assist in resolving the limitation of obtaining fewer competent oocytes for the embryo production in the species.
Collapse
Affiliation(s)
- Diksha Dua
- Embryo Biotechnology Laboratory, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Gaurav Tripathi
- Embryo Biotechnology Laboratory, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
6
|
Fattahi A, Liverani L, Dittrich R, Hoffmann I, Boccaccini AR, Beckmann MW, Bleisinger N. Optimization of Porcine Ovarian Follicle Isolation Methods for Better Developmental Potential. Tissue Eng Part A 2020; 26:712-719. [PMID: 32598233 DOI: 10.1089/ten.tea.2020.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the present study, we present a comparative analysis among the outputs of porcine follicle isolation using either mechanical technique alone or in combination with enzymes, proposing an optimized protocol useful for all further applications related to follicle in vitro growth and reproductive tissue engineering. The porcine follicles were isolated using mechanical technique alone (hand blender and scalpels) or in combination with collagenase or Liberase Dispase High (DH) at different doses applying different protocols. Finally, the number, morphology, and stage of isolated follicles were compared between the protocols. Moreover, the follicle viability (live/dead assay) and morphology (rhodamine phalloidin and 4',6-diamidino-2-phenylindole staining and scanning electron microscopy analysis) were evaluated after 10 days of culture. We found an optimum protocol for intact follicle isolation using the mechanical technique in combination with enzymes at a concentration of 0.5 mg/mL. However, the number of total isolated follicles and primordial follicles was significantly higher when collagenase was used compared to Liberase DH (p < 0.05), while Liberase DH could isolate a significantly higher percentage of preantral follicles. After 10 days of culture, the morphology and health status of follicles were statistically higher when Liberase DH was used in comparison with collagenase. Moreover, on the follicles extracted with Liberase DH, it was possible to observe theca cells covering part of the follicle surface. In conclusion, we demonstrated that the intact primary or secondary follicles could not be obtained using only mechanical methods, which led to the isolation of denuded oocytes and dramatically damaged follicles. We concluded that the collagenase-based follicle isolation could negatively affect the morphology and developmental potential of the follicles. Moreover, the incubation of ovarian cortex tissues with Liberase DH solution is an optimized protocol for porcine ovarian follicle isolation with developmental competence. Impact statement Isolation and in vitro maturation of follicles can pave the way for activities on reproductive tissue engineering (REPROTEN) and developing an artificial ovary. In this regard, the standardization and optimization of the extraction methods are pivotal for the design of experiment of follicle in vitro growth. In the present study, we provided a comparative analysis among the outputs of porcine follicle isolation using either mechanical technique alone or in combination with collagenase or Liberase DH, proposing an optimized protocol useful for all further applications related to follicles' in vitro growth and REPROTEN.
Collapse
Affiliation(s)
- Amir Fattahi
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany
| | - Inge Hoffmann
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center ER-EMN, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen University Hospital, Erlangen, Germany
| |
Collapse
|
7
|
Grafted polymer brush coatings for growth of cow granulosa cells and oocyte-cumulus cell complexes. Biointerphases 2020; 15:031006. [PMID: 32443936 DOI: 10.1116/6.0000183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present work, three types of grafted brush coatings [P4VP, POEGMA246, and P(4VP-co-POEGMA246)] were successfully fabricated using graft polymerization of monomers "from the surface." The composition, thickness, and morphology of the grafted brush coatings were analyzed by TOF-SIMS, ellipsometry, and AFM, respectively. The chemical nature of the polymer surface plays a crucial role in the growth and development of the cow granulosa cells and, therefore, also oocyte-cumulus complexes. In comparison with other coatings, the P(4VP-co-POEGMA246) copolymer coating enables the formation of dispersed and small but numerous cell conglomerates and high cumulus expansion in oocyte-cumulus complexes with highly homogeneous cumulus layers surrounding the oocytes. Moreover, the cellular oxygen uptake for this coating in the presence of NaF (inhibitor glycolysis) was stimulated. This new (4VP-co-POEGMA246) copolymer nanostructured coating is a promising material for granulosa cell and oocyte-cumulus complex cultivation and possibly will have great potential for applications in veterinary and reproductive medicine.
Collapse
|
8
|
Lopes EPF, Rodrigues GQ, de Brito DCC, Rocha RMP, Ferreira ACA, de Sá NAR, Silva RFD, de Alcântara GLH, Alves BG, Figueiredo JRD, Zelinski M, Rodrigues APR. Vitrification of caprine secondary and early antral follicles as a perspective to preserve fertility function. Reprod Biol 2020; 20:371-378. [PMID: 32418820 DOI: 10.1016/j.repbio.2020.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 01/09/2023]
Abstract
The present study aimed to evaluate the structure, survival and development of isolated caprine (secondary-SEC and early antral-EANT) follicles, after vitrification in the presence of synthetic polymers and in vitro culture. Additionally, transzonal projections (TZPs) and p450 aromatase enzyme were evaluated. After isolation, SEC and EANT follicles were in vitro cultured for six days or vitrified. After one week, SEC and EANT follicles were warmed and also in vitro cultured for six days. Data revealed that the percentage of morphologically normal follicles was similar between fresh and vitrified follicles in both follicular categories and antrum formation rate was similar between fresh and vitrified SEC follicles. Fluorescence by calcein-AM did not show difference between fresh and vitrified (SEC and EANT) follicles, however, the trypan blue test showed low viability for vitrified follicles. The integrity of TZPs was not affected between fresh and vitrified SEC follicles, however, in vitrified EANT follicles, there were signs of TZPs loss. Regarding steroidogenic function, it was observed a positive staining for p450 aromatase enzyme in fresh and vitrified SEC and EANT follicles. It was concluded that SEC follicles seem to be more resistant to vitrification than EANT follicles, as shown by the trypan blue test and TZPs assay. Future studies may confirm this hypothesis, in order to consolidate the use of SEC and EANT follicles as an alternative to ovary cryopreservation.
Collapse
Affiliation(s)
- Everton Pimentel Ferreira Lopes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Giovanna Quintino Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Danielle Cristina Calado de Brito
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | | | - Anna Clara Accioly Ferreira
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Naíza Arcângela Ribeiro de Sá
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Renato Félix da Silva
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Gabriel Las Heras de Alcântara
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | | | - José Ricardo de Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Mary Zelinski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Ana Paula Ribeiro Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
9
|
Cecconi S, Rapino C, Di Nisio V, Rossi G, Maccarrone M. The (endo)cannabinoid signaling in female reproduction: What are the latest advances? Prog Lipid Res 2019; 77:101019. [PMID: 31862482 DOI: 10.1016/j.plipres.2019.101019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Cannabis extracts like marijuana have the highest consumption rate worldwide. Yet, their societal acceptance as recreational and therapeutic drugs could represent a serious hazard to female human reproduction, because cannabis ingredients [termed (phyto)cannabinoids] can perturb an endogenous system of lipid signals known as endocannabinoids. Accumulated evidence on animal models and humans has demonstrated a crucial role of these endogenous signals on different aspects of female reproduction, where they act through an ensamble of proteins that synthesize, transport, degrade and traffic them. Several reports have recently evidenced the potential role of endocannabinoids as biomarkers of female infertility for disease treatment and prevention, as well as their possible epigenetic effects on pregnancy. The purpose of this review is to provide an update of data collected in the last decade on the effects of cannabinoids and endocannabinoids on female reproductive events, from development and maturation of follicles and oocytes, to fertilization, oviductal transport, implantation and labor. In this context, a particular attention has been devoted to the ovary and the production of fertilizable oocytes, because recent studies have addressed this hot topic with conflicting results among species.
Collapse
Affiliation(s)
- Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano, 64 - 00143 Rome, Italy.
| |
Collapse
|