1
|
Guo X, Wang J. Kinetic models in environmental biotechnological processes: Origin, derivation and applications. CHEMOSPHERE 2025; 374:144217. [PMID: 39954464 DOI: 10.1016/j.chemosphere.2025.144217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Environmental biotechnological processes encompass the utilization of microorganisms for various applications, such as wastewater treatment, bioproduct formation, and waste management. Kinetic modeling plays a crucial role in optimizing and designing these processes. This paper provides a comprehensive understanding of the kinetic models used in environmental biotechnological processes, focusing on the kinetics of microbial growth, bioproduct formation, substrate consumption, and pollutant degradation. Firstly, by investigating their origins, derivations, and development, we clarified the theoretical basis and practical implications of key models, such as the Gompertz, Logistic, first-order, Cone, Monod, Andrews, Shepherd, Stover-Kincannon, Grau, and Arrhenius models. Secondly, we highlighted the extension of the models from microbial growth kinetics to bioproduction kinetics, showcasing their versatility and applicability across different domains. In addition, critical parameters within the models were discussed, providing insights into their importance for characterizing and predicting biotechnological processes. Overall, this paper will deepen the understanding of biotechnological kinetic processes and lay the foundation for their practical applications.
Collapse
Affiliation(s)
- Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Guo X, Wang J. Guidelines for selection and application of kinetics models in bioproduction processes. Trends Biotechnol 2024:S0167-7799(24)00320-2. [PMID: 39672764 DOI: 10.1016/j.tibtech.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
Biotechnology is widely used in bioproduction to transform waste into valuable products. A comprehensive understanding of the kinetics involved is crucial for optimizing system designs. In this review, we explore various kinetics models (e.g., the Gompertz, Logistic, Cone, first-order, Monod, and Andrews models) used in describing bioproduction processes. We focus on their interpretation and applications in microbial growth, bioproduct formation, substrate consumption, and the factors influencing bioproduction processes. We provide guidelines for selecting appropriate kinetics models, emphasizing their suitability for different kinetic processes under varying conditions. Additionally, we discuss the importance of statistical parameters in evaluating model performance. This review presents a framework for applying these models to effectively predict and optimize bioproduction systems.
Collapse
Affiliation(s)
- Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Wang J, Guo X. The Gompertz model and its applications in microbial growth and bioproduction kinetics: Past, present and future. Biotechnol Adv 2024; 72:108335. [PMID: 38417562 DOI: 10.1016/j.biotechadv.2024.108335] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
The Gompertz model, initially proposed for human mortality rates, has found various applications in growth analysis across the biotechnological field. This paper presents a comprehensive review of the Gompertz model's applications in the biotechnological field, examining its past, present, and future. The past of the Gompertz model was examined by tracing its origins to 1825, and then it underwent various modifications throughout the 20th century to increase its applicability in biotechnological fields. The Zwietering-modified version has proven to be a versatile tool for calculating the lag-time and maximum growth rate/quantity in microbial growth. In addition, the present applications of the Gompertz model to microbial growth kinetics and bioproduction (e.g., hydrogen, methane, caproate, butanol, and hexanol production) kinetics have been comprehensively summarized and discussed. We highlighted the importance of standardized citations and guidance on model selection. The Zwietering-modified Gompertz model and the Lay-modified Gompertz model are recommended for describing microbial growth kinetics and bioproduction kinetics, recognized for their widespread use and provision of valuable kinetics information. Finally, in response to the current Gompertz models' focus on internal mortality, the modified Makeham-Gompertz models that consider both internal/external mortality were introduced and validated for microbial growth and bioproduction kinetics with good fitting performance. This paper provides a perspective of the Gompertz model and offers valuable insights that facilitate the diverse applications of this model in microbial growth and bioproduction kinetics.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
4
|
Germec M, Turhan I. Predictive modeling and sensitivity analysis to estimate the experimental data of inulinase fermentation by Aspergillus niger grown on sugar beet molasses-based medium optimized using Plackett-Burman Design. Biotechnol Appl Biochem 2022; 69:2399-2421. [PMID: 34847250 DOI: 10.1002/bab.2291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
The present work aimed to model Aspergillus niger inulinase fermentation performed in the medium using sigmoidal functions, validate the selected models using an independent set of the experimental values, and perform a sensitivity analysis of the selected models. Based on the results, the selected models were Stannard and Fitzhugh models for substrate consumption (R2 = 0.9976 and 0.9974, respectively), Huang model for inulinase production (R2 = 0.9967), Weibull model for invertase-type production (R2 = 0.9963), and modified logistic model for invertase-type activity/inulinase activity ratio (R2 = 0.9292) with high R2 values (>0.90). Kinetics predicted by particularly selected models mentioned above fit well with the experimental kinetic results. Besides, validation of the selected models with an independent set of the experimental data indicated that they gave satisfying results with high R2 values for consumption and production (R2 > 0.90). Sensitivity analysis of the selected models showed that the yielded R2 values (R2 ≥ 0.9775) were in good agreement with those obtained from the selected models. Consequently, A. niger inulinase fermentation was successfully modeled and the selected models were successfully validated with an independent set of the observed data. Besides, the sensitivity analysis also verified the reliability of the selected models. Those models can serve as universal equations to describe the A. niger inulinase fermentation.
Collapse
Affiliation(s)
- Mustafa Germec
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Optimization and kinetic modeling of media composition for hyaluronic acid production from carob extract with Streptococcus zooepidemicus. Bioprocess Biosyst Eng 2022; 45:2019-2029. [DOI: 10.1007/s00449-022-02806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
6
|
Groff MC, Scaglia G, Ortiz OA, Noriega SE. Modification of the Luedeking and Piret model with a delay time parameter for biotechnological lactic acid production. Biotechnol Lett 2022; 44:415-427. [DOI: 10.1007/s10529-022-03227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
|
7
|
Germec M, Turhan I. Kinetic modeling and sensitivity analysis of inulinase production in large-scale stirred tank bioreactor with sugar beet molasses-based medium. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Leonov PS, Flores-Alsina X, Gernaey KV, Sternberg C. Microbial biofilms in biorefinery - Towards a sustainable production of low-value bulk chemicals and fuels. Biotechnol Adv 2021; 50:107766. [PMID: 33965529 DOI: 10.1016/j.biotechadv.2021.107766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/11/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Harnessing the potential of biocatalytic conversion of renewable biomass into value-added products is still hampered by unfavorable process economics. This has promoted the use of biofilms as an alternative to overcome the limitations of traditional planktonic systems. In this paper, the benefits and challenges of biofilm fermentations are reviewed with a focus on the production of low-value bulk chemicals and fuels from waste biomass. Our study demonstrates that biofilm fermentations can potentially improve productivities and product yields by increasing biomass retention and allowing for continuous operation at high dilution rates. Furthermore, we show that biofilms can tolerate hazardous environments, which improve the conversion of crude biomass under substrate and product inhibitory conditions. Additionally, we present examples for the improved conversion of pure and crude substrates into bulk chemicals by mixed microbial biofilms, which can benefit from microenvironments in biofilms for synergistic multi-species reactions, and improved resistance to contaminants. Finally, we suggest the use of mathematical models as useful tools to supplement experimental insights related to the effects of physico-chemical and biological phenomena on the process. Major challenges for biofilm fermentations arise from inconsistent fermentation performance, slow reactor start-up, biofilm carrier costs and carrier clogging, insufficient biofilm monitoring and process control, challenges in reactor sterilization and scale-up, and issues in recovering dilute products. The key to a successful commercialization of the technology is likely going to be an interdisciplinary approach. Crucial research areas might include genetic engineering combined with the development of specialized biofilm reactors, biofilm carrier development, in-situ biofilm monitoring, model-based process control, mixed microbial biofilm technology, development of suitable biofilm reactor scale-up criteria, and in-situ product recovery.
Collapse
Affiliation(s)
- Pascal S Leonov
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Xavier Flores-Alsina
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Claus Sternberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Nigam H, Malik A, Singh V. A novel nanoemulsion-based microalgal growth medium for enhanced biomass production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:111. [PMID: 33941238 PMCID: PMC8091788 DOI: 10.1186/s13068-021-01960-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microalgae are well-established feedstocks for applications ranging from biofuels to valuable pigments and therapeutic proteins. However, the low biomass productivity using commercially available growth mediums is a roadblock for its mass production. This work describes a strategy to boost algal biomass productivity by using an effective CO2 supplement. RESULTS In the present study, a novel nanoemulsion-based media has been tested for the growth of freshwater microalgae strain Chlorella pyrenoidosa. Two different nanoemulsion-based media were developed using 1% silicone oil nanoemulsion (1% SE) and 1% paraffin oil nanoemulsion (1% PE) supplemented in Blue-green 11 media (BG11). After 12 days of cultivation, biomass yield was found highest in 1% PE followed by 1% SE and control, i.e., 3.20, 2.75, and 1.03 g L-1, respectively. The chlorophyll-a synthesis was improved by 76% in 1% SE and 53% in 1% PE compared with control. The respective microalgal cell numbers for 1% PE, 1% SE and control measured using the cell counter were 3.00 × 106, 2.40 × 106, and 1.34 × 106 cells mL-1. The effective CO2 absorption tendency of the emulsion was highlighted as the key mechanism for enhanced algal growth and biomass production. On the biochemical characterization of the produced biomass, it was found that the nanoemulsion-cultivated C. pyrenoidosa had increased lipid (1% PE = 26.80%, 1% SE = 23.60%) and carbohydrates (1% PE = 17.20%, 1% SE = 18.90%) content compared to the control (lipid = 18.05%, carbohydrates = 13.60%). CONCLUSIONS This study describes a novel nanoemulsion which potentially acts as an effective CO2 supplement for microalgal growth media thereby increasing the growth of microalgal cells. Further, nanoemulsion-cultivated microalgal biomass depicts an increase in lipid and carbohydrate content. The approach provides high microalgal biomass productivity without altering morphological characteristics like cell shape and size as revealed by field emission scanning electron microscope (FESEM) images.
Collapse
Affiliation(s)
- Harshita Nigam
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Hauz Khas, New Delhi 110016 India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Hauz Khas, New Delhi 110016 India
| | - Vikram Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| |
Collapse
|
10
|
Characteristics of SSSF of rice straw and mass transfer of ethanol in a granular packed bed with N2 sparging. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Bader NB, Germec M, Turhan I. Ethanol production from different medium compositions of rice husk hydrolysate by using Scheffersomyces stipitis in a repeated-batch biofilm reactor and its modeling. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Gürler HN, Erkan SB, Ozcan A, Yılmazer C, Karahalil E, Germec M, Yatmaz E, Ogel ZB, Turhan I. Scale‐up processing with different microparticle agent for β‐mannanase production in a large‐scale stirred tank bioreactor. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hilal Nur Gürler
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Selime Benemir Erkan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ali Ozcan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Cansu Yılmazer
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ercan Karahalil
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Mustafa Germec
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| | - Ercan Yatmaz
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
- Göynük Culinary Arts Vocational School Akdeniz University Antalya Turkey
| | - Zumrut Begum Ogel
- Department of Food Engineering, Faculty of Engineering and Architecture Konya Food and Agriculture University Konya Turkey
| | - Irfan Turhan
- Department of Food Engineering, Faculty of Engineering Akdeniz University Antalya Turkey
| |
Collapse
|
13
|
Biofilm reactors for value-added products production: An in-depth review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Yavari M, Ebrahimi S, Aghazadeh V, Ghashghaee M. Kinetics of different bioreactor systems with Acidithiobacillus ferrooxidans for ferrous iron oxidation. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01660-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
The relative performance of two biofilm-based airlift reactors using different kinds of packing materials and one fixed bed biofilm reactor with a homemade packing material of high specific area (~ 1000 m2/m3) was addressed. The bioreactors operated under ferrous iron loading rates in the range of 8–120 mol Fe(II)/m3 h. Acidithiobacillus ferrooxidans cells immobilized in the three bioreactors afforded the reactions for an extended period of 120 days of continuous operation at the dilution rates of 0.2, 0.4, 0.7, 1 and 1.2 h−1. The maximum ferrous iron oxidation rates achieved in this study at a hydraulic residence time of 1.2 h were about 91, 68 and 51 mol Fe(II)/m3 h for the fixed bed, airlift1, and airlft2 bioreactors. The performance data from the fixed-bed bioreactor offered a higher potential for ferrous iron oxidation because of fast biofilm development, the formation of a thick biofilm, and lower sensitivity to shear, which enhanced the startup time of the bioreactor and the higher reactor productivity. Proper kinetic models were also presented for both the startup period and the steady-state process.
Collapse
|