1
|
Eivazzadeh-Keihan R, Sadat Z, Lalebeigi F, Naderi N, Panahi L, Ganjali F, Mahdian S, Saadatidizaji Z, Mahdavi M, Chidar E, Soleimani E, Ghaee A, Maleki A, Zare I. Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. NANOSCALE ADVANCES 2024; 6:337-366. [PMID: 38235087 PMCID: PMC10790973 DOI: 10.1039/d3na00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/03/2023] [Indexed: 01/19/2024]
Abstract
Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Sadat
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Farnaz Lalebeigi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Nooshin Naderi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Leila Panahi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fatemeh Ganjali
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Sakineh Mahdian
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Saadatidizaji
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Elham Chidar
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Erfan Soleimani
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran P.O. Box 14395-1561 Tehran Iran
| | - Ali Maleki
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd Shiraz 7178795844 Iran
| |
Collapse
|
2
|
Rezapourian M, Hussainova I. Optimal mechanical properties of Hydroxyapatite gradient Voronoi porous scaffolds for bone applications - A numerical study. J Mech Behav Biomed Mater 2023; 148:106232. [PMID: 37952505 DOI: 10.1016/j.jmbbm.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Irregular Voronoi-based lattice (IVL) structures in tissue engineering (TE) have significant potential for bone regeneration. These scaffolds can mimic natural human bone interconnectivity by gradually altering strut thickness (ST) and seed point space (PS), which affects both mechanical and biological characteristics. This paper investigates the impact of design parameters, ST and PS, on Hydroxyapatite (HA) ILV structures' mechanical properties (elastic modulus (E) and maximum compressive strength (MCS)) and geometrical characteristics (pore number, size, and distribution, surface area (SA), and surface area-to-volume ratio (SA/VR)). Four types of IVL scaffolds were designed; PC-TC (Constant PS-Constant ST), PC-TG (Constant PS-Gradient ST), PG-TC (Gradient PS-Constant ST), and PG-TG (Gradient PS-Gradient ST). The study, conducted through linear static structural finite element analysis (FEA) with maximum stress criteria, underscores the profound impact of irregularity and morphology on mechanical performance and geometrical features. Regarding SA and SA/VR, a comparison between PC-TC with other proposed scaffolds showed a minor improvement for PC-TG, while higher significant improvements were found for both PG-TG and PG-TC. In terms of pores distribution and number, no noticeable improvement was observed for the PC-TG scaffold compared to PC-TC. In contrast, PG-TC and PG-TG lattices demonstrated a variety of pore distributions and approximately doubled pore numbers. Studying mechanical properties, considering E and MCS, showcases substantial gains for PG-TC. It, however, revealed that for the rest of the scaffolds, no enhancement was observed regarding E. Based on these results, gradient PS proved to be more effective than gradient ST in enhancing mechanical performance and geometrical properties. Due to these improvements, this study holds promise for expediting bone regeneration and reducing postoperative complications in bone replacement applications.
Collapse
Affiliation(s)
- Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia.
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
3
|
Eichholz K, Freeman F, Pitacco P, Nulty J, Ahern D, Burdis R, Browe D, Garcia O, Hoey D, Kelly DJ. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication 2022; 14. [PMID: 35947963 DOI: 10.1088/1758-5090/ac88a1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Abstract
Emerging 3D printing technologies can provide exquisite control over the external shape and internal architecture of scaffolds and tissue engineered constructs, enabling systematic studies to explore how geometric design features influence the regenerative process. Here we used fused deposition modelling (FDM) and melt electrowriting (MEW) to investigate how scaffold microarchitecture influences the healing of large bone defects. FDM was used to fabricate scaffolds with relatively large fibre diameters and low porosities, while MEW was used to fabricate scaffolds with smaller fibre diameters and higher porosities, with both scaffolds being designed to have comparable surface areas. Scaffold microarchitecture significantly influenced the healing response following implantation into critically sized femoral defects in rats, with the FDM scaffolds supporting the formation of larger bone spicules through its pores, while the MEW scaffolds supported the formation of a more round bone front during healing. After 12 weeks in vivo, both MEW and FDM scaffolds supported significantly higher levels of defect vascularisation compared to empty controls, while the MEW scaffolds supported higher levels of new bone formation. Somewhat surprisingly, this superior healing in the MEW group did not correlate with higher levels of angiogenesis, with the FDM scaffold supporting greater total vessel formation and the formation of larger vessels, while the MEW scaffold promoted the formation of a dense microvasculature with minimal evidence of larger vessels infiltrating the defect region. To conclude, the small fibre diameter, high porosity and high specific surface area of the MEW scaffold proved beneficial for osteogenesis and bone regeneration, demonstrating that changes in scaffold architecture enabled by this additive manufacturing technique can dramatically modulate angiogenesis and tissue regeneration without the need for complex exogenous growth factors. These results provide a valuable insight into the importance of 3D printed scaffold architecture when developing new bone tissue engineering strategies.
Collapse
Affiliation(s)
- Kian Eichholz
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons Building, Dublin, IRELAND
| | - Fiona Freeman
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Pierluca Pitacco
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Jessica Nulty
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Daniel Ahern
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Ross Burdis
- Trinity Biomedical Institute, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - David Browe
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services Inc, Irvine, California, 0000, UNITED STATES
| | - David Hoey
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons building, Dublin, 2, IRELAND
| | - Daniel John Kelly
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| |
Collapse
|
4
|
McCarthy A, Shah R, John JV, Brown D, Xie J. Understanding and utilizing textile-based electrostatic flocking for biomedical applications. APPLIED PHYSICS REVIEWS 2021; 8:041326. [PMID: 35003482 PMCID: PMC8715800 DOI: 10.1063/5.0070658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 05/10/2023]
Abstract
Electrostatic flocking immobilizes electrical charges to the surface of microfibers from a high voltage-connected electrode and utilizes Coulombic forces to propel microfibers toward an adhesive-coated substrate, leaving a forest of aligned fibers. This traditional textile engineering technique has been used to modify surfaces or to create standalone anisotropic structures. Notably, a small body of evidence validating the use of electrostatic flocking for biomedical applications has emerged over the past several years. Noting the growing interest in utilizing electrostatic flocking in biomedical research, we aim to provide an overview of electrostatic flocking, including the principle, setups, and general and biomedical considerations, and propose a variety of biomedical applications. We begin with an introduction to the development and general applications of electrostatic flocking. Additionally, we introduce and review some of the flocking physics and mathematical considerations. We then discuss how to select, synthesize, and tune the main components (flocking fibers, adhesives, substrates) of electrostatic flocking for biomedical applications. After reviewing the considerations necessary for applying flocking toward biomedical research, we introduce a variety of proposed use cases including bone and skin tissue engineering, wound healing and wound management, and specimen swabbing. Finally, we presented the industrial comments followed by conclusions and future directions. We hope this review article inspires a broad audience of biomedical, material, and physics researchers to apply electrostatic flocking technology to solve a variety of biomedical and materials science problems.
Collapse
Affiliation(s)
- Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Rajesh Shah
- Spectro Coating Corporation, Leominster, Massachusetts 01453, USA
| | - Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Demi Brown
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA
| | - Jingwei Xie
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
Davoodi E, Montazerian H, Esmaeilizadeh R, Darabi AC, Rashidi A, Kadkhodapour J, Jahed H, Hoorfar M, Milani AS, Weiss PS, Khademhosseini A, Toyserkani E. Additively Manufactured Gradient Porous Ti-6Al-4V Hip Replacement Implants Embedded with Cell-Laden Gelatin Methacryloyl Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22110-22123. [PMID: 33945249 DOI: 10.1021/acsami.0c20751] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Laser additive manufacturing has led to a paradigm shift in the design of next-generation customized porous implants aiming to integrate better with the surrounding bone. However, conflicting design criteria have limited the development of fully functional porous implants; increasing porosity improves body fluid/cell-laden prepolymer permeability at the expense of compromising mechanical stability. Here, functionally gradient porosity implants and scaffolds designed based on interconnected triply periodic minimal surfaces (TPMS) are demonstrated. High local porosity is defined at the implant/tissue interface aiming to improve the biological response. Gradually decreasing porosity from the surface to the center of the porous constructs provides mechanical strength in selective laser melted Ti-6Al-4V implants. The effect of unit cell size is studied to discover the printability limit where the specific surface area is maximized. Furthermore, mechanical studies on the unit cell topology effects suggest that the bending-dominated architectures can provide significantly enhanced strength and deformability, compared to stretching-dominated architectures. A finite element (FE) model developed also showed great predictability (within ∼13%) of the mechanical responses of implants to physical activities. Finally, in vitro biocompatibility studies were conducted for two-dimensional (2D) and three-dimensional (3D) cases. The results of the 2D in conjunction with surface roughness show favored physical cell attachment on the implant surface. Also, the results of the 3D biocompatibility study for the scaffolds incorporated with a cell-laden gelatin methacryloyl (GelMA) hydrogel show excellent viability. The design procedure proposed here provides new insights into the development of porous hip implants with simultaneous high mechanical and biological responses.
Collapse
Affiliation(s)
- Elham Davoodi
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Reza Esmaeilizadeh
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Ali Ch Darabi
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Armin Rashidi
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Javad Kadkhodapour
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Hamid Jahed
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Kchaou M, Alquraish M, Abuhasel K, Abdullah A, Ali AA. Electrospun Nanofibrous Scaffolds: Review of Current Progress in the Properties and Manufacturing Process, and Possible Applications for COVID-19. Polymers (Basel) 2021; 13:916. [PMID: 33809662 PMCID: PMC8002202 DOI: 10.3390/polym13060916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last twenty years, researchers have focused on the potential applications of electrospinning, especially its scalability and versatility. Specifically, electrospun nanofiber scaffolds are considered an emergent technology and a promising approach that can be applied to biosensing, drug delivery, soft and hard tissue repair and regeneration, and wound healing. Several parameters control the functional scaffolds, such as fiber geometrical characteristics and alignment, architecture, etc. As it is based on nanotechnology, the concept of this approach has shown a strong evolution in terms of the forms of the materials used (aerogels, microspheres, etc.), the incorporated microorganisms used to treat diseases (cells, proteins, nuclei acids, etc.), and the manufacturing process in relation to the control of adhesion, proliferation, and differentiation of the mimetic nanofibers. However, several difficulties are still considered as huge challenges for scientists to overcome in relation to scaffolds design and properties (hydrophilicity, biodegradability, and biocompatibility) but also in relation to transferring biological nanofibers products into practical industrial use by way of a highly efficient bio-solution. In this article, the authors review current progress in the materials and processes used by the electrospinning technique to develop novel fibrous scaffolds with suitable design and that more closely mimic structure. A specific interest will be given to the use of this approach as an emergent technology for the treatment of bacteria and viruses such as COVID-19.
Collapse
Affiliation(s)
- Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Mohammed Alquraish
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Khaled Abuhasel
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Ahmad Abdullah
- Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia;
- Department of Civil Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
| | - Ashraf A. Ali
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| |
Collapse
|
7
|
Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Int J Mol Sci 2020; 21:ijms21010315. [PMID: 31906530 PMCID: PMC6981894 DOI: 10.3390/ijms21010315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Fused deposit modeling (FDM) 3D printing technology cannot generate scaffolds with high porosity while maintaining good integrity, anatomical-surface detail, or high surface area-to-volume ratio (S/V). Solvent casting and particulate leaching (SCPL) technique generates scaffolds with high porosity and high S/V. However, it is challenging to generate complex-shaped scaffolds; and solvent, particle and residual water removal are time consuming. Here we report techniques surmounting these problems, successfully generating a highly porous scaffold with the anatomical-shape characteristics of a human femur by polylactic acid polymer (PLA) and PLA-hydroxyapatite (HA) casting and salt leaching. The mold is water soluble and is easily removable. By perfusing with ethanol, water, and dry air sequentially, the solvent, salt, and residual water were removed 20 fold faster than utilizing conventional methods. The porosities are uniform throughout the femoral shaped scaffold generated with PLA or PLA-HA. Both scaffolds demonstrated good biocompatibility with the pre-osteoblasts (MC3T3-E1) fully attaching to the scaffold within 8 h. The cells demonstrated high viability and proliferation throughout the entire time course. The HA-incorporated scaffolds demonstrated significantly higher compressive strength, modulus and osteoinductivity as evidenced by higher levels of alkaline-phosphatase activity and calcium deposition. When 3D printing a 3D model at 95% porosity or above, our technology preserves integrity and surface detail when compared with FDM-generated scaffolds. Our technology can also generate scaffolds with a 31 fold larger S/V than FDM. We have developed a technology that is a versatile tool in creating personalized, patient-specific bone graft scaffolds efficiently with high porosity, good scaffold integrity, high anatomical-shaped surface detail and large S/V.
Collapse
|