1
|
Strotkötter V, Li Y, Kostka A, Lourens F, Löffler T, Schuhmann W, Ludwig A. Self-formation of compositionally complex surface oxides on high entropy alloys observed by accelerated atom probe tomography: a route to sustainable catalysts. MATERIALS HORIZONS 2024; 11:4932-4941. [PMID: 39045620 PMCID: PMC11472866 DOI: 10.1039/d4mh00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Sustainable catalysts rely on abundant elements which are prone to oxidation. A route to non-noble electrocatalysts is opened by directing the formation of unavoidable surface oxides towards creating a few atomic layers of an active and stable electrocatalyst, which is in direct contact with its metallic, conducting support. This is enabled by combining possibilities of compositionally complex solid solutions with accelerated atomic-scale surface characterization. Surface composition changes from the as-synthesized state to states after exposure to the oxygen evolution reaction (OER) are investigated using a Cantor-alloy-catalyst-coated tip array for atom probe tomography (APT): The film on top of the tip forms a nanoreactor which enables acquisition of intrinsic properties. The as-deposited film has an around 3 nm thick native oxide; short and prolonged OER exposures result in an oxygen-influenced surface layer with lower oxidation depth and altered metal composition. This shows that as-synthesized complex compositions can be used to obtain active and stable surface oxides under electrochemical load, while their surface evolution is observed by accelerated APT.
Collapse
Affiliation(s)
- Valerie Strotkötter
- Materials Discovery and Interfaces (MDI) Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany.
| | - Yujiao Li
- Center for Interface-Dominated High Performance Materials (ZGH) Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Aleksander Kostka
- Center for Interface-Dominated High Performance Materials (ZGH) Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Florian Lourens
- Materials Discovery and Interfaces (MDI) Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany.
| | - Tobias Löffler
- Center for Interface-Dominated High Performance Materials (ZGH) Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
- Analytical Chemistry - Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Alfred Ludwig
- Materials Discovery and Interfaces (MDI) Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany.
- Center for Interface-Dominated High Performance Materials (ZGH) Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
- Research Center Future Energy Materials and Systems (RC FEMS), Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| |
Collapse
|
2
|
Zand F, Hangx SJT, Spiers CJ, van den Brink PJ, Burns J, Boebinger MG, Poplawsky JD, Monai M, Weckhuysen BM. Elucidating the Structure and Composition of Individual Bimetallic Nanoparticles in Supported Catalysts by Atom Probe Tomography. J Am Chem Soc 2023; 145:17299-17308. [PMID: 37490556 PMCID: PMC10416302 DOI: 10.1021/jacs.3c04474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 07/27/2023]
Abstract
Understanding and controlling the structure and composition of nanoparticles in supported metal catalysts are crucial to improve chemical processes. For this, atom probe tomography (APT) is a unique tool, as it allows for spatially resolved three-dimensional chemical imaging of materials with sub-nanometer resolution. However, thus far APT has not been applied for mesoporous oxide-supported metal catalyst materials, due to the size and number of pores resulting in sample fracture during experiments. To overcome these issues, we developed a high-pressure resin impregnation strategy and showcased the applicability to high-porous supported Pd-Ni-based catalyst materials, which are active in CO2 hydrogenation. Within the reconstructed volume of 3 × 105 nm3, we identified over 400 Pd-Ni clusters, with compositions ranging from 0 to 16 atom % Pd and a size distribution of 2.6 ± 1.6 nm. These results illustrate that APT is capable of quantitatively assessing the size, composition, and metal distribution for a large number of nanoparticles at the sub-nm scale in industrial catalysts. Furthermore, we showcase that metal segregation occurred predominately between nanoparticles, shedding light on the mechanism of metal segregation. We envision that the presented methodology expands the capabilities of APT to investigate porous functional nanomaterials, including but not limited to solid catalysts.
Collapse
Affiliation(s)
- Florian Zand
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Suzanne J. T. Hangx
- High
Pressure and Temperature Laboratory, Utrecht
University, 3584 CB Utrecht, The Netherlands
| | - Christopher J. Spiers
- High
Pressure and Temperature Laboratory, Utrecht
University, 3584 CB Utrecht, The Netherlands
| | | | - James Burns
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthew G. Boebinger
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jonathan D. Poplawsky
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matteo Monai
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
Zhao L, Cui Y, Li J, Xie Y, Li W, Zhang J. The 3D Controllable Fabrication of Nanomaterials with FIB-SEM Synchronization Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1839. [PMID: 37368269 DOI: 10.3390/nano13121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Nanomaterials with unique structures and functions have been widely used in the fields of microelectronics, biology, medicine, and aerospace, etc. With advantages of high resolution and multi functions (e.g., milling, deposition, and implantation), focused ion beam (FIB) technology has been widely developed due to urgent demands for the 3D fabrication of nanomaterials in recent years. In this paper, FIB technology is illustrated in detail, including ion optical systems, operating modes, and combining equipment with other systems. Together with the in situ and real-time monitoring of scanning electron microscopy (SEM) imaging, a FIB-SEM synchronization system achieved 3D controllable fabrication from conductive to semiconductive and insulative nanomaterials. The controllable FIB-SEM processing of conductive nanomaterials with a high precision is studied, especially for the FIB-induced deposition (FIBID) 3D nano-patterning and nano-origami. As for semiconductive nanomaterials, the realization of high resolution and controllability is focused on nano-origami and 3D milling with a high aspect ratio. The parameters of FIB-SEM and its working modes are analyzed and optimized to achieve the high aspect ratio fabrication and 3D reconstruction of insulative nanomaterials. Furthermore, the current challenges and future outlooks are prospected for the 3D controllable processing of flexible insulative materials with high resolution.
Collapse
Affiliation(s)
- Lirong Zhao
- School of Physics, Beihang University, Beijing 100191, China
| | - Yimin Cui
- School of Physics, Beihang University, Beijing 100191, China
| | - Junyi Li
- School of Physics, Beihang University, Beijing 100191, China
| | - Yuxi Xie
- School of Physics, Beihang University, Beijing 100191, China
| | - Wenping Li
- School of Physics, Beihang University, Beijing 100191, China
| | - Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
5
|
Jung C, Jun H, Jang K, Kim SH, Choi PP. Tracking the Mn Diffusion in the Carbon-Supported Nanoparticles Through the Collaborative Analysis of Atom Probe and Evaporation Simulation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-10. [PMID: 36250402 DOI: 10.1017/s1431927622012211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon-supported nanoparticles have been used widely as efficient catalysts due to their enhanced surface-to-volume ratio. To investigate their structure–property relationships, acquiring 3D elemental distribution is required. Here, carbon-supported Pt, PtMn alloy, and ordered Pt3Mn nanoparticles are synthesized and analyzed with atom probe tomography as model systems. A significant difference of Mn distribution after the heat-treatment was found. Finally, the field evaporation behavior of the carbon support was discussed and each acquired reconstruction was compared with computational results from an evaporation simulation. This paper provides a guideline for studies using atom probe tomography on the heterogeneous carbon-supported nanoparticle system that leads to insights toward a wide variety of applications.
Collapse
Affiliation(s)
- Chanwon Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
| | - Hosun Jun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyuseon Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Se-Ho Kim
- Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany
| | - Pyuck-Pa Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
van Vreeswijk SH, Weckhuysen BM. Emerging Analytical Methods to Characterize Zeolite-Based Materials. Natl Sci Rev 2022; 9:nwac047. [PMID: 36128456 PMCID: PMC9477204 DOI: 10.1093/nsr/nwac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites and zeolitic materials are, through their use in numerous conventional and sustainable applications, very important to our daily lives, including to foster the necessary transition to a more circular society. The characterization of zeolite-based materials has a tremendous history and a great number of applications and properties of these materials have been discovered in the past decades. This review focuses on recently developed novel as well as more conventional techniques applied with the aim of better understanding zeolite-based materials. Recently explored analytical methods, e.g. atom probe tomography, scanning transmission X-ray microscopy, confocal fluorescence microscopy and photo-induced force microscopy, are discussed on their important contributions to the better understanding of zeolites as they mainly focus on the micro- to nanoscale chemical imaging and the revelation of structure–composition–performance relationships. Some other techniques have a long and established history, e.g. nuclear magnetic resonance, infrared, neutron scattering, electron microscopy and X-ray diffraction techniques, and have gone through increasing developments allowing the techniques to discover new and important features in zeolite-based materials. Additional to the increasing application of these methods, multiple techniques are nowadays used to study zeolites under working conditions (i.e. the in situ/operando mode of analysis) providing new insights in reaction and deactivation mechanisms.
Collapse
Affiliation(s)
- S H van Vreeswijk
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - B M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
7
|
Petersen H, Weidenthaler C. A review of recent developments for the in situ/operando characterization of nanoporous materials. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00977c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is a review on up-to-date in situ/operando methods for a comprehensive characterization of nanoporous materials. The group of nanoporous materials is constantly growing, and with it, the variety of...
Collapse
|
8
|
Webel J, Weber L, Vardo E, Britz D, Kraus T, Mücklich F. Particle encapsulation techniques for atom probe tomography of precipitates in microalloyed steels. Ultramicroscopy 2021; 223:113219. [PMID: 33636593 DOI: 10.1016/j.ultramic.2021.113219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Atom probe tomography (APT) provides sub-nm resolution in the analysis of complex industrial steels. It can resolve the carbonitride precipitates in Nb-Ti microalloyed high-strength low-alloy (HSLA) steels that strongly affect material performance and illuminate the complex precipitation sequence before and during the thermo-mechanical controlled process (TMCP). However, the precipitate concentration is low in HSLA steels during austenite conditioning, especially at temperatures > 850 °C, so that the probability of detecting precipitates via APT is below 5%. Here, we demonstrate two encapsulation-based approaches that increase the precipitate concentration in the APT sample volume sufficiently to enable the analysis of sparse precipitates. The first method is based on metallographic etching and direct targeting of precipitates in the steel. A focused ion beam was used to mark precipitation sites. Encapsulation with nickel-phosphorus (Ni-P) enabled localized APT and increased the yield by a factor of 10. The second method relies on the chemical extraction of precipitates and subsequent encapsulation in a silicon oxide (SiOx) network at a very high particle density. Analysis of tips cut from the encapsulated particles increased the yield by a factor of >15. We discuss and compare the spatial and chemical accuracy obtained in the analysis of pure Nb-, Ti- and mixed Nb-Ti carbonitrides.
Collapse
Affiliation(s)
- Johannes Webel
- Institute for Functional Materials, University of Saarland, Campus D3 3, 66123 Saarbrücken, Germany; MECS - Materials Engineering Center Saarland, Campus D3 3 66123 Saarbrücken, Germany.
| | - Louis Weber
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Emina Vardo
- Faculty of Metallurgy and Technology, University of Zenica, Travnicka cesta 1, 72000 Zenica, Bosnia and Herzegovina
| | - Dominik Britz
- Institute for Functional Materials, University of Saarland, Campus D3 3, 66123 Saarbrücken, Germany; MECS - Materials Engineering Center Saarland, Campus D3 3 66123 Saarbrücken, Germany
| | - Tobias Kraus
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| | - Frank Mücklich
- Institute for Functional Materials, University of Saarland, Campus D3 3, 66123 Saarbrücken, Germany; MECS - Materials Engineering Center Saarland, Campus D3 3 66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Gault B, Chiaramonti A, Cojocaru-Mirédin O, Stender P, Dubosq R, Freysoldt C, Makineni SK, Li T, Moody M, Cairney JM. Atom probe tomography. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10.1038/s43586-021-00047-w. [PMID: 37719173 PMCID: PMC10502706 DOI: 10.1038/s43586-021-00047-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 09/19/2023]
Abstract
Atom probe tomography (APT) provides three-dimensional compositional mapping with sub-nanometre resolution. The sensitivity of APT is in the range of parts per million for all elements, including light elements such as hydrogen, carbon or lithium, enabling unique insights into the composition of performance-enhancing or lifetime-limiting microstructural features and making APT ideally suited to complement electron-based or X-ray-based microscopies and spectroscopies. Here, we provide an introductory overview of APT ranging from its inception as an evolution of field ion microscopy to the most recent developments in specimen preparation, including for nanomaterials. We touch on data reconstruction, analysis and various applications, including in the geosciences and the burgeoning biological sciences. We review the underpinnings of APT performance and discuss both strengths and limitations of APT, including how the community can improve on current shortcomings. Finally, we look forwards to true atomic-scale tomography with the ability to measure the isotopic identity and spatial coordinates of every atom in an ever wider range of materials through new specimen preparation routes, novel laser pulsing and detector technologies, and full interoperability with complementary microscopy techniques.
Collapse
Affiliation(s)
- Baptiste Gault
- Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College, London, UK
| | - Ann Chiaramonti
- National Institute of Standards and Technology, Applied Chemicals and Materials Division, Boulder, CO, USA
| | | | - Patrick Stender
- Institute of Materials Science, University of Stuttgart, Stuttgart, Germany
| | - Renelle Dubosq
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Tong Li
- Institute for Materials, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Moody
- Department of Materials, University of Oxford, Oxford, UK
| | - Julie M. Cairney
- Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales, Australia
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Aggregated nanoparticles: Sample preparation and analysis by atom probe tomography. Ultramicroscopy 2020; 218:113082. [DOI: 10.1016/j.ultramic.2020.113082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
|
11
|
Chattot R, Bordet P, Martens I, Drnec J, Dubau L, Maillard F. Building Practical Descriptors for Defect Engineering of Electrocatalytic Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raphaël Chattot
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
- European Synchrotron Radiation Facility, ID 31 Beamline, BP 220, F-38043 Grenoble, France
| | - Pierre Bordet
- Univ. Grenoble Alpes, CNRS, Institut Néel, F-38000 Grenoble, France
| | - Isaac Martens
- European Synchrotron Radiation Facility, ID 31 Beamline, BP 220, F-38043 Grenoble, France
| | - Jakub Drnec
- European Synchrotron Radiation Facility, ID 31 Beamline, BP 220, F-38043 Grenoble, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| |
Collapse
|