1
|
Zhou H, Wu Q, Wu L, Zhao Y. In vitro hemodynamics of fabric composite membrane for cardiac valve prosthesis replacement. J Biomech 2024; 163:111956. [PMID: 38266534 DOI: 10.1016/j.jbiomech.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
This study aimed to investigate the hemodynamics of a novel fabric composite that can be used as a substitute for bovine pericardium. The structure is composed of ultrahigh molecular weight polyethylene (UHMWPE) fabric coated with thermoplastic polyurethane (TPU) membranes on both sides. In vitro experiments were carried out on two composite valve samples with different specifications and a bovine pericardial one with the same dimension and structure. Hemodynamic properties including the effective orifice area (EOA) and regurgitant fraction (RF) were obtained and compared through pulsatile-flow testing in a pulse duplicator. Using the particle image velocimetry (PIV) technique, frames of the downstream velocity field in the aortic valve chamber were captured during cardiac cycles. Then, the field of Reynolds shear stress (RSS), viscous shear stress (VSS), and turbulent kinetic energy (TKE) at peak systole were calculated. A fluid-structure interaction (FSI) model has also been used to verify the pulsatile-flow testing. Compared with the bovine pericardial valve, composite valves have nosuperiority regarding EOA and RF due to their slightly higher rigidity. However, shear stresses of composite valves were lower than those of the bovine pericardial valve indicating more stable blood flows, which means that composite leaflets have the potential to reduce the risks of thrombosis and hemolysis induced by the mechanical contact between the blood flow and leaflets of valve prostheses.
Collapse
Affiliation(s)
- Han Zhou
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Qianqian Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China.
| | - Linzhi Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Advanced Ship Materials and Mechanics, Harbin Engineering University, Harbin 150001, China
| | - Yang Zhao
- Center for Composite Materials, Harbin Institute of Technology, Harbin 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Lancellotti P, Aqil A, Musumeci L, Jacques N, Ditkowski B, Debuisson M, Thiry M, Dupont J, Gougnard A, Sandersen C, Cheramy-Bien JP, Sakalihasan N, Nchimi A, Detrembleur C, Jérôme C, Oury C. Bioactive surface coating for preventing mechanical heart valve thrombosis. J Thromb Haemost 2023; 21:2485-2498. [PMID: 37196847 DOI: 10.1016/j.jtha.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Prosthetic heart valves are the only treatment for most patients with severe valvular heart disease. Mechanical valves, made of metallic components, are the most long-lasting type of replacement valves. However, they are prone to thrombosis and require permanent anticoagulation and monitoring, which leads to higher risk of bleeding and impacts the patient's quality of life. OBJECTIVES To develop a bioactive coating for mechanical valves with the aim to prevent thrombosis and improve patient outcomes. METHODS We used a catechol-based approach to produce a drug-releasing multilayer coating adherent to mechanical valves. The hemodynamic performance of coated Open Pivot valves was verified in a heart model tester, and coating durability in the long term was assessed in a durability tester producing accelerated cardiac cycles. Coating antithrombotic activity was evaluated in vitro with human plasma or whole blood under static and flow conditions and in vivo after surgical valve implantation in a pig's thoracic aorta. RESULTS We developed an antithrombotic coating consisting of ticagrelor- and minocycline-releasing cross-linked nanogels covalently linked to polyethylene glycol. We demonstrated the hydrodynamic performance, durability, and hemocompatibility of coated valves. The coating did not increase the contact phase activation of coagulation, and it prevented plasma protein adsorption, platelet adhesion, and thrombus formation. Implantation of coated valves in nonanticoagulated pigs for 1 month efficiently reduced valve thrombosis compared with noncoated valves. CONCLUSION Our coating efficiently inhibited mechanical valve thrombosis, which might solve the issues of anticoagulant use in patients and the number of revision surgeries due to valve thrombosis despite anticoagulation.
Collapse
Affiliation(s)
- Patrizio Lancellotti
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Abdelhafid Aqil
- Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liège, Liège, Belgium
| | - Lucia Musumeci
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Nicolas Jacques
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Bartosz Ditkowski
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Margaux Debuisson
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology, University of Liège, Liège, Belgium
| | - Julien Dupont
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alexandra Gougnard
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Charlotte Sandersen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jean-Paul Cheramy-Bien
- Department of Cardiovascular and Thoracic Surgery, Centre Hospitalier Universitaire of Liège, University of Liège, Liège, Belgium; Surgical Research Center, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, Centre Hospitalier Universitaire of Liège, University of Liège, Liège, Belgium; Surgical Research Center, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium
| | - Alain Nchimi
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liège, Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Institute, and Department of Cardiology, Centre Hospitalier Universitaire of Liège, University of Liège Hospital, Liège, Belgium.
| |
Collapse
|
3
|
Zhou H, Wu Q, Wu L, Zhao Y. Mechanical behaviors of high-strength fabric composite membrane designed for cardiac valve prosthesis replacement. J Mech Behav Biomed Mater 2023; 142:105863. [PMID: 37116312 DOI: 10.1016/j.jmbbm.2023.105863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Bovine pericardium has been commonly used as leaflets in cardiac valve prosthesis replacement for decades because of its good short-term hemocompatibility and hemodynamic performance. However, fatigue, abrasion, permanent deformation, calcification, and many other failure modes have been reported as well. The degradation of the performance will have a serious impact on the function of valve prostheses, posing a risk to the patient's health. This study aimed to introduce a flexible fabric composite with better mechanical performance such that it can be employed as a substitute material for bioprosthetic valve leaflets. This composite has a multilayered thin film structure made of ultrahigh molecular weight polyethylene (UHMWPE) fabric and thermoplastic polyurethane (TPU) membranes. The mechanical properties of three specifications with different design parameters were tested. The tensile strength, shear behavior, tear resistance, and bending stiffness of the composites were characterized and compared to those of bovine pericardium. A constitutive model was also established to describe the composites' mechanical behaviors and predict their strength. According to the results of the tests, the composite could maintain a flexible bending stiffness with high in-plane tensile strength and tear strength. Therefore, bioprosthetic valve made of this substitute material can withstand harsher loads in the blood flow environment than those made of bovine pericardium. Moreover, all these test results and constitutive models can be used in future research to evaluate hemodynamic performance and clinical applications of fabric composite valve prostheses.
Collapse
Affiliation(s)
- Han Zhou
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| | - Qianqian Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
| | - Linzhi Wu
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China; Key Laboratory of Advanced Ship Materials and Mechanics, Harbin Engineering University, Harbin, 150001, China
| | - Yang Zhao
- Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Rezvova MA, Klyshnikov KY, Gritskevich AA, Ovcharenko EA. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int J Mol Sci 2023; 24:3963. [PMID: 36835389 PMCID: PMC9967268 DOI: 10.3390/ijms24043963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The development of a novel artificial heart valve with outstanding durability and safety has remained a challenge since the first mechanical heart valve entered the market 65 years ago. Recent progress in high-molecular compounds opened new horizons in overcoming major drawbacks of mechanical and tissue heart valves (dysfunction and failure, tissue degradation, calcification, high immunogenic potential, and high risk of thrombosis), providing new insights into the development of an ideal artificial heart valve. Polymeric heart valves can best mimic the tissue-level mechanical behavior of the native valves. This review summarizes the evolution of polymeric heart valves and the state-of-the-art approaches to their development, fabrication, and manufacturing. The review discusses the biocompatibility and durability testing of previously investigated polymeric materials and presents the most recent developments, including the first human clinical trials of LifePolymer. New promising functional polymers, nanocomposite biomaterials, and valve designs are discussed in terms of their potential application in the development of an ideal polymeric heart valve. The superiority and inferiority of nanocomposite and hybrid materials to non-modified polymers are reported. The review proposes several concepts potentially suitable to address the above-mentioned challenges arising in the R&D of polymeric heart valves from the properties, structure, and surface of polymeric materials. Additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools have given the green light to set new directions for polymeric heart valves.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | - Kirill Y. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | | | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| |
Collapse
|
5
|
Dey A, Mete S, Banerjee S, Haldar U, Rajasekhar T, Srikanth K, Faust R, De P. Crystallinity of side-chain fatty acid containing block copolymers with polyisobutylene segment. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Hilgeroth PS, Thümmler JF, Binder WH. 3D Printing of Triamcinolone Acetonide in Triblock Copolymers of Styrene–Isobutylene–Styrene as a Slow-Release System. Polymers (Basel) 2022; 14:polym14183742. [PMID: 36145892 PMCID: PMC9504042 DOI: 10.3390/polym14183742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Additive manufacturing has a wide range of applications and has opened up new methods of drug formulation, in turn achieving attention in medicine. We prepared styrene–isobutylene–styrene triblock copolymers (SIBS; Mn = 10 kDa–25 kDa, PDI 1,3–1,6) as a drug carrier for triamcinolone acetonide (TA), further processed by fused deposition modeling to create a solid drug release system displaying improved bioavailability and applicability. Living carbocationic polymerization was used to exert control over block length and polymeric architecture. Thermorheological properties of the SIBS polymer (22.3 kDa, 38 wt % S) were adjusted to the printability of SIBS/TA mixtures (1–5% of TA), generating an effective release system effective for more than 60 days. Continuous drug release and morphological investigations were conducted to probe the influence of the 3D printing process on the drug release, enabling 3D printing as a formulation method for a slow-release system of Triamcinolone.
Collapse
|
7
|
Maji P, Naskar K. Styrenic block copolymer‐based thermoplastic elastomers in smart applications: Advances in synthesis, microstructure, and structure–property relationships—A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Purbasha Maji
- Rubber Technology Centre Indian Institute of Technology Kharagpur West Bengal India
| | - Kinsuk Naskar
- Rubber Technology Centre Indian Institute of Technology Kharagpur West Bengal India
| |
Collapse
|
8
|
Demirci G, Niedźwiedź MJ, Kantor-Malujdy N, El Fray M. Elastomer-Hydrogel Systems: From Bio-Inspired Interfaces to Medical Applications. Polymers (Basel) 2022; 14:1822. [PMID: 35566990 PMCID: PMC9104885 DOI: 10.3390/polym14091822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Novel advanced biomaterials have recently gained great attention, especially in minimally invasive surgical techniques. By applying sophisticated design and engineering methods, various elastomer-hydrogel systems (EHS) with outstanding performance have been developed in the last decades. These systems composed of elastomers and hydrogels are very attractive due to their high biocompatibility, injectability, controlled porosity and often antimicrobial properties. Moreover, their elastomeric properties and bioadhesiveness are making them suitable for soft tissue engineering. Herein, we present the advances in the current state-of-the-art design principles and strategies for strong interface formation inspired by nature (bio-inspiration), the diverse properties and applications of elastomer-hydrogel systems in different medical fields, in particular, in tissue engineering. The functionalities of these systems, including adhesive properties, injectability, antimicrobial properties and degradability, applicable to tissue engineering will be discussed in a context of future efforts towards the development of advanced biomaterials.
Collapse
Affiliation(s)
| | | | | | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland; (G.D.); (M.J.N.); (N.K.-M.)
| |
Collapse
|
9
|
Rezvova MA, Nikishau PA, Makarevich MI, Glushkova TV, Klyshnikov KY, Akentieva TN, Efimova OS, Nikitin AP, Malysheva VY, Matveeva VG, Senokosova EA, Khanova MY, Danilov VV, Russakov DM, Ismagilov ZR, Kostjuk SV, Ovcharenko EA. Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene- b-isobutylene- b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:733. [PMID: 35269222 PMCID: PMC8911977 DOI: 10.3390/nano12050733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/27/2023]
Abstract
Nanocomposites based on poly(styrene-block-isobutylene-block-styrene) (SIBS) and single-walled carbon nanotubes (CNTs) were prepared and characterized in terms of tensile strength as well as bio- and hemocompatibility. It was shown that modification of CNTs using dodecylamine (DDA), featured by a long non-polar alkane chain, provided much better dispersion of nanotubes in SIBS as compared to unmodified CNTs. As a result of such modification, the tensile strength of the nanocomposite based on SIBS with low molecular weight (Mn = 40,000 g mol-1) containing 4% of functionalized CNTs was increased up to 5.51 ± 0.50 MPa in comparison with composites with unmodified CNTs (3.81 ± 0.11 MPa). However, the addition of CNTs had no significant effect on SIBS with high molecular weight (Mn~70,000 g mol-1) with ultimate tensile stress of pure polymer of 11.62 MPa and 14.45 MPa in case of its modification with 1 wt% of CNT-DDA. Enhanced biocompatibility of nanocomposites as compared to neat SIBS has been demonstrated in experiment with EA.hy 926 cells. However, the platelet aggregation observed at high CNT concentrations can cause thrombosis. Therefore, SIBS with higher molecular weight (Mn~70,000 g mol-1) reinforced by 1-2 wt% of CNTs is the most promising material for the development of cardiovascular implants such as heart valve prostheses.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
| | - Miraslau I. Makarevich
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
- Department of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Tatiana V. Glushkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Kirill Yu. Klyshnikov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Tatiana N. Akentieva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Olga S. Efimova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Andrey P. Nikitin
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Valentina Yu. Malysheva
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Vera G. Matveeva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Evgeniia A. Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Mariam Yu. Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Viacheslav V. Danilov
- Research Laboratory for Processing and Analysis of Big Data, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Dmitry M. Russakov
- Institute of Fundamental Sciences, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Zinfer R. Ismagilov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
- Department of Chemistry, Belarusian State University, 220006 Minsk, Belarus
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Evgeny A. Ovcharenko
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| |
Collapse
|
10
|
Yu Z, Feng X, Zhao C, Li J, Liu R, Jin Y, Wu Y. Synthesis of linear and star-shaped telechelic polyisobutylene by cationic polymerization. RSC Adv 2022; 12:27380-27388. [PMID: 36275998 PMCID: PMC9513759 DOI: 10.1039/d2ra04504d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Hydroxyl-terminated linear and star-shaped telechelic polyisobutylene have been successfully synthesized by living cationic polymerization using propylene oxide (PO)/Titanium tetrachloride (TiCl4) as the initiator system. A one-step method to prepare the terminal hydroxyl group was realized by selecting the cheap and beautiful epoxide as the functional initiator, which has the prospect of industrial application. The polymerization mechanism was proposed by the end structure analysis and Gaussian calculation results. At the same time, the living linear macromolecular chain was used as the starting point to react with divinyl compounds for synthesis of star-shaped hydroxyl-terminated polyisobutylene. The effects of initiator-crosslinking agent ratio, arm length, and reaction time on the coupling reaction were studied. Hydroxyl-terminated linear and star-shaped telechelic polyisobutylene have been successfully synthesized by living cationic polymerization using propylene oxide (PO)/Titanium tetrachloride (TiCl4) as the initiator system.![]()
Collapse
Affiliation(s)
- Zhaopeng Yu
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiaohu Feng
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Chenqi Zhao
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Jiajun Li
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Ruofan Liu
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yushun Jin
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yibo Wu
- The College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
11
|
Bohdan M, Shiman DI, Nikishau PA, Vasilenko IV, Kostjuk SV. Quasiliving carbocationic polymerization of isobutylene using FeCl 3 as an efficient and water-tolerant Lewis acid: synthesis of well-defined telechelic polyisobutylenes. Polym Chem 2022. [DOI: 10.1039/d2py01106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A cost-efficient approach for the preparation of well-defined low molecular weight difunctional polyisobutulenes possessing an exo-olefin or hydroxyl group was developed in this study.
Collapse
Affiliation(s)
- Mikalai Bohdan
- Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya St. 14, 220006, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Leningradskaya St. 14, 220006, Minsk, Belarus
| | - Dmitriy I. Shiman
- Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya St. 14, 220006, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Leningradskaya St. 14, 220006, Minsk, Belarus
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya St. 14, 220006, Minsk, Belarus
| | - Irina V. Vasilenko
- Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya St. 14, 220006, Minsk, Belarus
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, Leningradskaya St. 14, 220006, Minsk, Belarus
- Department of Chemistry, Belarusian State University, Leningradskaya St. 14, 220006, Minsk, Belarus
| |
Collapse
|
12
|
Dey A, Haldar U, De P. Block Copolymer Synthesis by the Combination of Living Cationic Polymerization and Other Polymerization Methods. Front Chem 2021; 9:644547. [PMID: 34262892 PMCID: PMC8273170 DOI: 10.3389/fchem.2021.644547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
The foremost limitation of block copolymer synthesis is to polymerize two or more different types of monomers with different reactivity profiles using a single polymerization technique. Controlled living polymerization techniques play a vital role in the preparation of wide range of block copolymers, thus are revolutionary techniques for polymer industry. Polymers with good control over molecular weight, molecular weight distribution, chain-end functionality and architectures can be prepared by these processes. In order to improve the existing applications and create new opportunities to design a new block copolymer system with improved physical and chemical properties, the combination of two different polymerization techniques have tremendous scope. Such kinds of macromolecules may be attended by combination of homopolymerization of different monomers by post-modification techniques using a macroinitiator or by using a dual initiator which allows the combination of two mechanistically distinct techniques. This review focuses on recent advances in synthesis of block copolymers by combination of living cationic polymerization with other polymerization techniques and click chemistry.
Collapse
Affiliation(s)
| | | | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| |
Collapse
|
13
|
Basak S. Thermoplastic elastomers in biomedical industry – evolution and current trends. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1922086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sayan Basak
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Wu B, Jin L, Ding K, Zhou Y, Yang L, Lei Y, Guo Y, Wang Y. Extracellular matrix coating improves the biocompatibility of polymeric heart valves. J Mater Chem B 2020; 8:10616-10629. [PMID: 33146226 DOI: 10.1039/d0tb01884h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prosthetic heart valve replacement is an effective therapy for patients with valvular heart disease. New-type polymer materials provide potential choices of material for preparing prosthetic heart valves. In this study, we focused on enhancing the biocompatibility of polystyrene-block-isobutylene-block-styrene (SIBS) by surface modification with an extracellular matrix (ECM). Experimental results demonstrated that the ECM coating increased the adsorption resistance against protein and platelets. SIBS coated with an ECM adsorbed much less bovine serum albumin and fibrinogen (5.38 μg cm-2 and 31.53 μg cm-2, respectively) than the original material (90.84 μg cm-2 and 132.38 μg cm-2, respectively). The relative platelet adsorption of the ECM-modified SIBS was lower than that of SIBS (0.04 versus 0.10). Moreover, the surface coating could also reduce endothelial cytotoxicity, suppress the immune response, and potentially induce tissue regeneration. In conclusion, ECM coating improved the biocompatibility of SIBS effectively.
Collapse
Affiliation(s)
- Binggang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China. and Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, P. R. China
| | - Linhe Jin
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Kailei Ding
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yonghua Zhou
- Beijing Huiyu Biomedical Technologies LLC, 1707 street, Chaoyang District, Beijing 100000, P. R. China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
15
|
Rezvova MA, Yuzhalin AE, Glushkova TV, Makarevich MI, Nikishau PA, Kostjuk SV, Klyshnikov KY, Matveeva VG, Khanova MY, Ovcharenko EA. Biocompatible Nanocomposites Based on Poly(styrene- block-isobutylene- block-styrene) and Carbon Nanotubes for Biomedical Application. Polymers (Basel) 2020; 12:E2158. [PMID: 32971801 PMCID: PMC7569909 DOI: 10.3390/polym12092158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023] Open
Abstract
In this study, we incorporated carbon nanotubes (CNTs) into poly(styrene-block-isobutylene-block-styrene) (SIBS) to investigate the physical characteristics of the resulting nanocomposite and its cytotoxicity to endothelial cells. CNTs were dispersed in chloroform using sonication following the addition of a SIBS solution at different ratios. The resultant nanocomposite films were analyzed by X-ray microtomography, optical and scanning electron microscopy; tensile strength was examined by uniaxial tension testing; hydrophobicity was evaluated using a sessile drop technique; for cytotoxicity analysis, human umbilical vein endothelial cells were cultured on SIBS-CNTs for 3 days. We observed an uneven distribution of CNTs in the polymer matrix with sporadic bundles of interwoven nanotubes. Increasing the CNT content from 0 wt% to 8 wt% led to an increase in the tensile strength of SIBS films from 4.69 to 16.48 MPa. The engineering normal strain significantly decreased in 1 wt% SIBS-CNT films in comparison with the unmodified samples, whereas a further increase in the CNT content did not significantly affect this parameter. The incorporation of CNT into the SIBS matrix resulted in increased hydrophilicity, whereas no cytotoxicity towards endothelial cells was noted. We suggest that SIBS-CNT may become a promising material for the manufacture of implantable devices, such as cardiovascular patches or cusps of the polymer heart valve.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Arseniy E. Yuzhalin
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Miraslau I. Makarevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
- Institute of Regenerative Medicine, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Kirill Yu. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Mariam Yu. Khanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| |
Collapse
|
16
|
Rezvova MA, Glushkova TV, Makarevich MI, Nikishau PA, Kostjuk SV, Klyshnikov KY, Ovcharenko EA. Nanocomposites Based on Biocompatible Thermoelastoplastic and Carbon Nanoparticles for Use in Cardiovascular Surgery. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220090141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers (Basel) 2020; 12:E1197. [PMID: 32456335 PMCID: PMC7285236 DOI: 10.3390/polym12051197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023] Open
Abstract
Due to their mechanical properties, ranging from flexible to hard materials, polyurethanes (PUs) have been widely used in many industrial and biomedical applications. PUs' characteristics, along with their biocompatibility, make them successful biomaterials for short and medium-duration applications. The morphology of PUs includes two structural phases: hard and soft segments. Their high mechanical resistance featuresare determined by the hard segment, while the elastomeric behaviour is established by the soft segment. The most important biomedical applications of PUs include antibacterial surfaces and catheters, blood oxygenators, dialysis devices, stents, cardiac valves, vascular prostheses, bioadhesives/surgical dressings/pressure-sensitive adhesives, drug delivery systems, tissue engineering scaffolds and electrospinning, nerve generation, pacemaker lead insulation and coatings for breast implants. The diversity of polyurethane properties, due to the ease of bulk and surface modification, plays a vital role in their applications.
Collapse
Affiliation(s)
- Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania
| | - Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology and Angiogenesis Research Center Timisoara, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Catalin Adrian Miu
- 3rd Department of Orthopaedics-Traumatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Caius Glad Streian
- Department of Cardiac Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| |
Collapse
|
18
|
Ovcharenko EA, Seifalian A, Rezvova MA, Klyshnikov KY, Glushkova TV, Akenteva TN, Antonova LV, Velikanova EA, Chernonosova VS, Shevelev GY, Shishkova DK, Krivkina EO, Kudryavceva YA, Seifalian AM, Barbarash LS. A New Nanocomposite Copolymer Based On Functionalised Graphene Oxide for Development of Heart Valves. Sci Rep 2020; 10:5271. [PMID: 32210287 PMCID: PMC7093488 DOI: 10.1038/s41598-020-62122-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Polymeric heart valves seem to be an attractive alternative to mechanical and biological prostheses as they are more durable, due to the superior properties of novel polymers, and have the biocompatibility and hemodynamics comparable to tissue substitutes. This study reports a comprehensive assessment of a nanocomposite based on the functionalised graphene oxide and poly(carbonate-urea)urethane with the trade name "Hastalex" in comparison with GORE-TEX, a commercial polymer routinely used for cardiovascular medical devices. Experimental data have proved that GORE-TEX has a 2.5-fold (longitudinal direction) and 3.5-fold (transverse direction) lower ultimate tensile strength in comparison with Hastalex (p < 0.05). The contact angles of Hastalex surfaces (85.2 ± 1.1°) significantly (p < 0.05) are lower than those of GORE-TEX (127.1 ± 6.8°). The highest number of viable cells Ea.hy 926 is on the Hastalex surface exceeding 7.5-fold when compared with the GORE-TEX surface (p < 0.001). The platelet deformation index for GORE-TEX is 2-fold higher than that of Hastalex polymer (p < 0.05). Calcium content is greater for GORE-TEX (8.4 mg/g) in comparison with Hastalex (0.55 mg/g). The results of this study have proven that Hastalex meets the main standards required for manufacturing artificial heart valves and has superior mechanical, hemocompatibility and calcific resistance properties in comparison with GORE-TEX.
Collapse
Affiliation(s)
- Evgeny A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation.
| | - Amelia Seifalian
- UCL Medical School, University College London, London, United Kingdom
| | - Maria A Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation.
| | - Kirill Yu Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Tatiana V Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Tatyana N Akenteva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Larisa V Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Elena A Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Vera S Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russian Federation
| | - Georgy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russian Federation
| | - Darya K Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Evgeniya O Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Yuliya A Kudryavceva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Alexander M Seifalian
- NanoRegMed Ltd (Nanotechnology and Regenerative Medicine Commercialization Centre), London BioScience Innovation Centre, London, United Kingdom
| | - Leonid S Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| |
Collapse
|