1
|
Rainfall Variability and Trends over the African Continent Using TAMSAT Data (1983–2020): Towards Climate Change Resilience and Adaptation. REMOTE SENSING 2021. [DOI: 10.3390/rs14010096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study reveals rainfall variability and trends in the African continent using TAMSAT data from 1983 to 2020. In the study, a Mann–Kendall (MK) test and Sen’s slope estimator were used to analyze rainfall trends and their magnitude, respectively, under monthly, seasonal, and annual timeframes as an indication of climate change using different natural and geographical contexts (i.e., sub-regions, climate zones, major river basins, and countries). The study finds that the highest annual rainfall trends were recorded in Rwanda (11.97 mm/year), the Gulf of Guinea (river basin 8.71 mm/year), the tropical rainforest climate zone (8.21 mm/year), and the Central African region (6.84 mm/year), while Mozambique (−0.437 mm/year), the subtropical northern desert (0.80 mm/year), the west coast river basin of South Africa (−0.360 mm/year), and the Northern Africa region (1.07 mm/year) show the lowest annual rainfall trends. There is a statistically significant increase in the rainfall in the countries of Africa’s northern and central regions, while there is no statistically significant change in the countries of the southern and eastern regions. In terms of climate zones, in the tropical northern desert climates, tropical northern peninsulas, and tropical grasslands, there is a significant increase in rainfall over the entire timeframe of the month, season, and year. This implies that increased rainfall will have a positive effect on the food security of the countries in those climatic zones. Since a large percentage of Africa’s agriculture is based only on rainfall (i.e., rain-fed agriculture), increasing trends in rainfall can assist climate resilience and adaptation, while declining rainfall trends can badly affect it. This information can be crucial for decision-makers concerned with effective crop planning and water resource management. The rainfall variability and trend analysis of this study provide important information to decision-makers that need to effectively mitigate drought and flood risk.
Collapse
|
2
|
Late 21st Century Projected Changes in the Relationship between Precipitation, African Easterly Jet, and African Easterly Waves. ATMOSPHERE 2020. [DOI: 10.3390/atmos11040353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study utilizes three high-resolution simulations from the Regional Climate Model version 4 (RegCM4) to examine the late 21st century changes (2080–2099) in the West African Monsoon (WAM) features. A set of three Earth System Models are utilized to provide initial and lateral boundary conditions to the RegCM4 experiments. Our analysis focuses on seasonal mean changes in WAM large-scale dynamical features, along with their connections with the summer monsoon precipitation. In the historical period, the simulation ensemble means mimic reasonably well the intensity and spatial distribution of the WAM rainfall as well as the WAM circulation patterns at different scales. The future projection of the WAM climate exhibits warming over the whole West Africa leading to precipitation reduction over the Sahel region, and a slight increase over some areas of the Guinea Coast. The position of the African Easterly Jet (AEJ) is shifted southward and the African Easterly Waves (AEWs) activities are reduced, which affect in turn the WAM rainbelt characteristics in terms of position and strength. Overall the changes in simulated AEJ and AEWs contribute substantially to reduce the seasonal summer mean precipitation in West Africa by the late 21st century, with prevailing negative changes in the Savanna-Sahel region. To further explore the robustness of the relationships revealed in this paper, future studies using different high-resolution regional climate models with large ensemble are recommended.
Collapse
|