1
|
Li Z, Chen X, Liu W, Li T, Qiu G, Yan H, Wang M, Chen J, Sun G, Wang Q, Feng X. Soil and ambient air mercury as an indicator of coal-fired power plant emissions: a case study in North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12842-9. [PMID: 33635465 DOI: 10.1007/s11356-021-12842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Coal-fired power plants (CFPPs) are an important anthropogenic mercury (Hg) source in China, and it is crucial to understand the environmental impacts of this detrimental element emitted from this source. In the present study, field experiments were conducted for measuring Hg in ambient atmosphere and upland agricultural soils within a radius of 10 km surrounding a large scale coal-fired power plant (1550 MW) in Tangshan, Hebei province. Short-term (20 min) average of gaseous elemental mercury (GEM or Hg0) in ambient air varying from 1.5 to 9.0 ng/m3 and total Hg (THg) in surface agricultural soil (0-20 cm) varying from 9.2 to 43.5 μg/kg at different sites were observed. THg in two soil cores decreased with depth, with concentrations being 2-2.5 times higher in the surface layer than that in the deep layer (50-60 cm), indicating the possibility of the atmospheric input of Hg. Based on the information of the total atmospheric Hg emission since this CFPP's operation in 1970s and the increased THg in nearby soils, it was estimated that about 3.9% discharged Hg has accumulated in the nearby agricultural soils. The low retention rate of the total emitted Hg by soils is a result of high proportion of Hg0 (79.5%) in stack gas emission and potential loss of Hg from soil surface reemission. The positive shifting (~ 0.5‰) of Hg isotopic signature (δ202Hg) from deep soil to surface soil reflected Hg deposition from nearby CFPP emissions that are featured with much heavier Hg isotopic signatures inherited from feed coal (δ202Hg: -0.50‰) and different combustion products (δ202Hg: -0.95 to 3.71‰) compared with that in deep soil layer (δ202Hg: ca -1.50‰). Overall, this study demonstrated that this CFPP has a slight but distinguishable effect on the elevation of ambient GEM and agricultural soil THg in the local environment.
Collapse
Affiliation(s)
- Zhonggen Li
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China.
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xufeng Chen
- Tangshan Environmental Monitoring Center of Hebei Province, Tangshan, 063000, China
| | - Wenli Liu
- Tangshan Environmental Monitoring Center of Hebei Province, Tangshan, 063000, China
| | - Taishan Li
- Tangshan Institute of Environmental Protection, Tangshan, 063000, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Mingmeng Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qingfeng Wang
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
2
|
Behaviors of Chromium in Coal-Fired Power Plants and Associated Atmospheric Emissions in Guizhou, Southwest China. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coal burning is a main concern for a range of atmospheric pollutants, including the environmentally sensitive element chromium (Cr). Cr migrates to the environment through stack emissions and can leach out from solid coal-burning byproducts, thereby causing adverse effects on the ecosystem. In this study, atmospheric emissions of Cr from six coal-fired power plants (CFPPs), as well as the distribution of Cr inside these CFPPs in Guizhou Province, Southwest China, were investigated. Among the six CFPPs, one was a circulating fluidized bed boiler and the others were pulverized coal boilers. The results showed that Cr in the feed fuel of these CFPPs ranged from 39.5 to 101.5 mg·kg−1 (average: 68.0 ± 24.8 mg·kg−1) and was approximately four times higher than the national and global average. Cr in the feed fuel correlated significantly with the ash yield, demonstrating that Cr in coal is closely associated with ash-forming minerals. After the coal combustion and the treatment by different air pollution control devices, most Cr (>92%) in the installation was retained in the captured fly ash and bottom ash, with less as gypsum (0.69–7.94%); eventually, only 0.01–0.03% of Cr was emitted into the atmosphere with a concentration of 1.4–2.2 μg·Nm−3. The atmospheric emission factors of Cr for these utility boilers were as low as 14.86 ± 3.62 mg Cr·t−1 coal, 7.72 ± 2.53 μg Cr (kW·h)−1, and 0.70 ± 0.19 g Cr·TJ−1, respectively. About 981 kg·y−1 of Cr was discharged into the atmosphere from Guizhuo’s CFPPs in 2017, much lower than previous reported values. Most of the Cr in the CFPPs ended up in solid combustion products, identifying the need for the careful disposal of high-Cr-containing ashes (up to 500 mg·kg−1) to prevent possible mobilization into the environment.
Collapse
|
3
|
Traceable Determination of Atmospheric Mercury Using Iodinated Activated Carbon Traps. ATMOSPHERE 2020. [DOI: 10.3390/atmos11080780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Traceable determination of atmospheric mercury (Hg) represents a major analytical problem due to low environmental concentrations. Although Hg pre-concentration on activated carbon (AC) traps is a simple method for sample collection, Hg determination is difficult due to a complex matrix that cannot be easily digested using wet chemistry. Two approaches for Hg loading on iodinated AC, the purging of elemental mercury (Hg0) and the spiking a solution of standard reference material (SRM), were used to test whether spiking SRM solution on AC can be used for the traceable determination of atmospheric mercury collected as Hg0. Mercury on AC was determined using atomic absorption spectrometry after sample combustion. The detector’s response for both loading methods was identical in a wide concentration range, indicating that the spiking of SRM on AC can, indeed, be used for the calibration of analytical systems used for the determination of atmospheric mercury. This was confirmed by the determination of Hg in a real atmospheric sample collected on an iodinated AC trap and using an SRM spiking calibration. Different ACs were compared regarding their ability to quantitatively capture Hg while having the lowest breakthrough. Use of a specific impregnating solution probably converted Hg on AC to Millon’s iodide, as estimated from the fractionation thermogram.
Collapse
|
4
|
Mallongi A, Stang, Syamsuar, Natsir MF, Astuti RDP, Rauf AU, Rachmat M, Muhith A. Potential ecological risks of mercury contamination along communities area in tonasa cement industry Pangkep, Indonesia. ENFERMERIA CLINICA 2020. [DOI: 10.1016/j.enfcli.2019.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Lyman SN, Cheng I, Gratz LE, Weiss-Penzias P, Zhang L. An updated review of atmospheric mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135575. [PMID: 31784172 DOI: 10.1016/j.scitotenv.2019.135575] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The atmosphere is a key component of the biogeochemical cycle of mercury, acting as a reservoir, transport mechanism, and facilitator of chemical reactions. The chemical and physical behavior of atmospheric mercury determines how, when, and where emitted mercury pollution impacts ecosystems. In this review, we provide current information about what is known and what remains uncertain regarding mercury in the atmosphere. We discuss new ambient, laboratory, and theoretical information about the chemistry of mercury in various atmospheric media. We review what is known about mercury in and on solid- and liquid-phase aerosols. We present recent findings related to wet and dry deposition and spatial and temporal trends in atmospheric mercury concentrations. We also review atmospheric measurement methods that are in wide use and those that are currently under development.
Collapse
Affiliation(s)
- Seth N Lyman
- Bingham Research Center, Utah State University, 320 N Aggie Blvd., Vernal, UT, USA; Department of Chemistry and Biochemistry, Utah State University, 4820 Old Main Hill, Logan, UT, USA.
| | - Irene Cheng
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, Canada
| | - Lynne E Gratz
- Environmental Studies Program, Colorado College, 14 East Cache la Poudre St., Colorado Springs, CO, USA
| | - Peter Weiss-Penzias
- Chemistry and Biochemistry Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA; Microbiology and Environmental Toxicology Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA, USA
| | - Leiming Zhang
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto, Ontario, Canada
| |
Collapse
|