1
|
Andronikou M, Lytras N, Chrysanthou G, Koutsokeras L, Constantinides G, Stylianou M, Agapiou A, Vyrides I. Biogas upgrading to methane and removal of volatile organic compounds in a system of zero-valent iron and anaerobic granular sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87245-87256. [PMID: 35802326 DOI: 10.1007/s11356-022-21750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The current study presented a novel process of biogas upgrading to biomethane (higher than 97%) based on anaerobic sludge and zero-valent iron (ZVI) system. When ZVI was added into an aquatic system with anaerobic granular sludge (AnGrSl) under anaerobic abiotic conditions, H2 was generated. Then, the H2 and CO2 were converted by the hydrogenotrophic methanogens to CH4. Biogas upgrading to biomethane was achieved in 4 days in the AnGrSl system (50 g L-1 ZVI, initial pH 5 and 20 g L-1 NaHCO3). In this system, when zero-valent scrap iron (ZVSI) was added instead of ZVI, a more extended period (21 days) was required to achieve biogas upgrading. X-ray diffraction (XRD) analysis revealed that the materials in a reactor with CO2 or biogas headspace, exhibited a mixture of ferrite and the iron carbonate phase of siderite (FeCO3), with the latter being the dominant phase. VOCs analysis in raw biogas (in the system of anaerobic sludge and ZVI) highlighted the reduction of low mass straight- and branched-chain alkanes (C6-C10). Also, H2S and NH3 were found to be substantially reduced when the anaerobic sludge was exposed to ZVI compared to the cases where ZVI was not added. This study found that simultaneously with biogas upgrading, VOCs, H2S and NH3 can be removed in a system of ZVI or ZVSI and AnGrSl under aquatic anaerobic conditions.
Collapse
Affiliation(s)
- Maria Andronikou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str, P.O. BOX 50329, 3603, Limassol, Cyprus
| | - Nikolaos Lytras
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str, P.O. BOX 50329, 3603, Limassol, Cyprus
| | - Georgia Chrysanthou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str, P.O. BOX 50329, 3603, Limassol, Cyprus
| | - Loukas Koutsokeras
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Kitiou Kyprianou 45, 3041, Limassol, Cyprus
- Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Kitiou Kyprianou 45, 3041, Limassol, Cyprus
| | - Georgios Constantinides
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Kitiou Kyprianou 45, 3041, Limassol, Cyprus
- Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Kitiou Kyprianou 45, 3041, Limassol, Cyprus
| | - Marinos Stylianou
- Department of Chemistry, University of Cyprus, P.O. BOX 20537, 1678, Nicosia, Cyprus
| | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, P.O. BOX 20537, 1678, Nicosia, Cyprus
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 57 Anexartisias Str, P.O. BOX 50329, 3603, Limassol, Cyprus.
| |
Collapse
|
2
|
Biogas role in achievement of the sustainable development goals: Evaluation, Challenges, and Guidelines. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104207] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Zhou R, Yang J, Zhang K, Qi Y, Ma W, Wang Z, Ente M, Li K. Analysis of volatiles from feces of released Przewalski's horse (Equus przewalskii) in Gasterophilus pecorum (Diptera: Gasterophilidae) spawning habitat. Sci Rep 2021; 11:15671. [PMID: 34341455 PMCID: PMC8329074 DOI: 10.1038/s41598-021-95162-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
The absolute dominant species that infests wild population of Przewalski's horse (Equus przewalskii) is Gasterophilus pecorum, and feces of released Przewalski's horse, a habitat odor, plays an important role in mating and ovipositing locations of G. pecorum. To screen out unique volatiles for attracting G. pecorum, volatiles from fresh feces of released horses at stages of pre-oviposition (PREO), oviposition (OVIP), and post-oviposition (POSO) of G. pecorum, and feces with three different freshness states (i.e., Fresh, Semi-fresh, and Dry) at OVIP were collected by dynamic headspace adsorption and determined by automatic thermal desorption GC-MS. Results show that there were significant differences in fecal volatiles within both test conditions. Of the five most abundant volatiles from the five individual samples, the most important volatile was ammonium acetate at OVIP/Fresh, followed by acetophenone (Semi-fresh), toluene (PREO, OVIP and POSO), butanoic acid (OVIP and Semi-fresh), acetic acid (PREO, POSO and Semi-fresh), 1,6-octadiene,3,7-dimethyl-,(S)- (PREO, OVIP and POSO), 1,5,9-undecatriene,2,6,10-trimethyl-,(Z)- (PREO and Semi-fresh) and caprolactam (all conditions), which seem to be critical substances in oviposition process of G. pecorum. The findings may be beneficial to development of G. pecorum attractants, facilitating prevention and control of infection by G. pecorum to released Przewalski's horse.
Collapse
Affiliation(s)
- Ran Zhou
- Key Laboratory of Non-Invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jianming Yang
- Xinjiang Research Centre for Breeding Przewalski's Horse, Urumqi, 831700, Xinjiang, China
| | - Ke Zhang
- Key Laboratory of Non-Invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yingjie Qi
- Xinjiang Kalamaili Ungulate Nature Reserve Management Center, Changji, 831100, Xinjiang, China
| | - Wei Ma
- Xinjiang Kalamaili Ungulate Nature Reserve Management Center, Changji, 831100, Xinjiang, China
| | - Zhenbiao Wang
- Xinjiang Research Centre for Breeding Przewalski's Horse, Urumqi, 831700, Xinjiang, China
| | - Make Ente
- Xinjiang Research Centre for Breeding Przewalski's Horse, Urumqi, 831700, Xinjiang, China
| | - Kai Li
- Key Laboratory of Non-Invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity. CLEAN TECHNOLOGIES 2021. [DOI: 10.3390/cleantechnol3020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deep eutectic solvents (DES) are compounds of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) that contain a depressed melting point compared to their individual constituents. DES have been studied for their use as carbon capture media and biogas upgrading. However, contaminants’ presence in biogas might affect the carbon capture by DES. In this study, conductor-like screening model for real solvents (COSMO-RS) was used to determine the effect of temperature, pressure, and selective contaminants on five DES’ namely, choline chloride-urea, choline chloride-ethylene glycol, tetra butyl ammonium chloride-ethylene glycol, tetra butyl ammonium bromide-decanoic acid, and tetra octyl ammonium chloride-decanoic acid. Impurities studied in this paper are hydrogen sulfide, ammonia, water, nitrogen, octamethyltrisiloxane, and decamethylcyclopentasiloxane. At infinite dilution, CO2 solubility dependence upon temperature in each DES was examined by means of Henry’s Law constants. Next, the systems were modeled from infinite dilution to equilibrium using the modified Raoults’ Law, where CO2 solubility dependence upon pressure was examined. Finally, solubility of CO2 and CH4 in the various DES were explored with the presence of varying mole percent of selective contaminants. Among the parameters studied, it was found that the HBD of the solvent is the most determinant factor for the effectiveness of CO2 solubility. Other factors affecting the solubility are alkyl chain length of the HBA, the associated halogen, and the resulting polarity of the DES. It was also found that choline chloride-urea is the most selective to CO2, but has the lowest CO2 solubility, and is the most polar among other solvents. On the other hand, tetraoctylammonium chloride-decanoic acid is the least selective, has the highest maximum CO2 solubility, is the least polar, and is the least affected by its environment.
Collapse
|
5
|
Mitigation of Odor and Gaseous Emissions from Swine Barn with UV-A and UV-C Photocatalysis. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UV-A (ca. 365 nm wavelength, a.k.a. ‘black light’) photocatalysis has been investigated to comprehensively mitigate odor and selected air pollutants in the livestock environment. This study was conducted to confirm the performance of UV-A photocatalysis on the swine farm. The objectives of this research were to (1) scale-up of the UV-A photocatalysis treatment, (2) evaluate the mitigation of odorous gases from swine slurry pit, (3) test different UV sources, (4) evaluate the effect of particulate matter (PM) and (5) conduct preliminary economic analyses. We tested UV-A photocatalysis at a mobile laboratory-scale capable of treating ~0.2–0.8 m3·s−1 of barn exhaust air. The targeted gaseous emissions of barn exhaust air were significantly mitigated (p < 0.05) up to 40% reduction of measured odor; 63%, 44%, 32%, 40%, 66% and 49% reduction of dimethyl disulfide, isobutyric acid, butanoic acid, p-cresol, indole and skatole, respectively; 40% reduction of H2S; 100% reduction of O3; and 13% reduction of N2O. The PM mitigation effect was not significant. Formaldehyde levels did not change, and a 21% generation of CO2 was observed. The percent reduction of targeted gases decreased as the airborne PM increased. Simultaneous chemical and sensory analysis confirmed that UV-A treatment changed the overall nuisance odor character of swine barn emissions into weaker manure odor with ‘toothpaste and ‘mint’ notes. The smell of benzoic acid generated in UV-A treatment was likely one of the compounds responsible for the less-offensive overall odor character of the UV-treated emissions. Results are needed to inform the design of a farm-scale trial, where the interior barn walls can be treated with the photocatalyst.
Collapse
|
6
|
Bai X, Chen YC. Synergistic effect and supernatant nitrogen reduction from anaerobic co-digestion of sewage sludge and pig manure. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|