1
|
Sorkheh M, Asgari HM, Zamani I, Ghanbari F. The Relationship Between Dust Sources and Airborne Bacteria in the Southwest of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82045-82063. [PMID: 35748994 PMCID: PMC9244375 DOI: 10.1007/s11356-022-21563-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 05/30/2023]
Abstract
The biological agents are carried from deserts and dried lands to long distances by high dust volumes. Their adverse effects can be reduced by specifying and controlling dust sources and their related biological agents. Thus, the current work examined the relationship between the bacteria in air and soil samples by taking samples from the soil surface of two dust sources, as well as from air samples during spring from Khorramshahr and Abadan cities. The dust event is the most influential factor on airborne bacteria. There is an insignificant negative (-0.06), insignificant positive (0.14), and weak positive (0.24) correlation between airborne bacteria and UV radiation, relative humidity, and temperature, respectively. After preparing a 16S ribosomal DNA (rDNA) clone library from the soil and air samples, operational taxonomic unit picking and taxonomic assignment were conducted using QIIME Virtual Box. In the present work, Bacillus was the dominant species. The relationship between dust sources and air samples was determined by principal component analysis. Bacteria in the Hoor-Al-Azim dust source and airborne bacteria on dusty and non-dusty days showed a more significant correlation compared to bacteria in the Shadegan dust source. Source Tracker software was used to estimate the contribution of dust sources. The primary source of dust was associated with the dried areas of Hoor-Al-Azim on the non-dusty and dusty days. Finally, the long transport of airborne bacteria was assessed by moderate resolution imaging spectroradiometer (MODIS) and the back trajectory model of Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) data. The research findings can help decision-makers prioritize dust sources to control the adverse effects of dust.
Collapse
Affiliation(s)
- Maryam Sorkheh
- Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Hossein Mohammad Asgari
- Department of Marine Environment, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Isaac Zamani
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
2
|
Long-Term Studies of Biological Components of Atmospheric Aerosol: Trends and Variability. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Biological components of atmospheric aerosol affect the quality of atmospheric air. Long-term trends in changes of the concentrations of total protein (a universal marker of the biogenic component of atmospheric aerosol) and culturable microorganisms in the air are studied. Methods: Atmospheric air samples are taken at two locations in the south of Western Siberia and during airborne sounding of the atmosphere. Sample analysis is carried out in the laboratory using standard culture methods (culturable microorganisms) and the fluorescence method (total protein). Results: Negative trends in the average annual concentration of total protein and culturable microorganisms in the air are revealed over more than 20 years of observations. For the concentration of total protein and culturable microorganisms in the air, intra-annual dynamics is revealed. The ratio of the maximum and minimum values of these concentrations reaches an order of magnitude. The variability of concentrations does not exceed, as a rule, two times for total protein and three times for culturable microorganisms. At the same time, for the data obtained in the course of airborne sounding of the atmosphere, a high temporal stability of the vertical profiles of the studied concentrations was found. The detected biodiversity of culturable microorganisms in atmospheric air samples demonstrates a very high variability at all observation sites. Conclusions: The revealed long-term changes in the biological components of atmospheric aerosol result in a decrease in their contribution to the atmospheric air quality index.
Collapse
|
3
|
Sharma Ghimire P, Joshi DR, Tripathee L, Chen P, Sajjad W, Kang S. Seasonal taxonomic composition of microbial communal shaping the bioaerosols milieu of the urban city of Lanzhou. Arch Microbiol 2022; 204:222. [PMID: 35344106 DOI: 10.1007/s00203-022-02832-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
Here, the taxonomical composition and seasonal dynamics of airborne microbial communities were described in the urban city of Lanzhou, Northwest China. Year-long samples were studied in two filter membranes (Quartz and PTFE). Higher microbial loads were reported in the PTFE than in the quartz filter. Onefold decrease was reported in bacterial loads in spring and summer than winter and autumn for both filters. The fungal loadings were lowest during winter and highest during autumn, followed by summer. The microbial communities included Actinobacteria and Proteobacteria, Ascomycota, and Basidiomycota as major components. Maximum abundance of the members from Gammaproteobacteria, Coriobacteria and Clostridia were studied in all seasons on PTFE membrane, followed by, Erysipelotrichia, Negativicutes and Fusobacteria. Members of Actinobacteria and Bacilli showed higher abundance in spring and winter, with a small proportion during autumn. Members of Clostridia, Gammaproteobacteria, Bacilli, and Actinobacteria showed maximum abundance on the quartz filter in all the seasons. Similarly, on the PTFE, fungi including Dothideomycetes and Agaricomycetes were dominant, followed by Saccharomycetes during summer and winter. The result showed that PM2.5, SO42-, NO2-, Na+, EC, and OC are important environmental parameters influencing the seasonal microbial community. However, the relation of the microbiome with the environment cannot be confidently defined because the environmental factors are changeable and yet interrelated.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.,Himalayan Environment Research Institute (HERI), Kathmandu, 44602, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, 44613, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.,Himalayan Environment Research Institute (HERI), Kathmandu, 44602, Nepal
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China. .,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100085, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
4
|
Sharma Ghimire P, Tripathee L, Kang S. Modification and coupled use of technologies are an essential envisioned need for bioaerosol study - An emerging public health concern. FUNDAMENTAL RESEARCH 2022; 2:218-221. [PMID: 38933152 PMCID: PMC11197662 DOI: 10.1016/j.fmre.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
The airborne microbiome is one of the relevant topics in ecology, biogeochemistry, environment, and human health. Bioaerosols are ubiquitous air pollutants that play a vital role in the linking of the ecosystem with the biosphere, atmosphere, climate, and public health. However, the sources, abundance, composition, properties, and atmospheric transport mechanisms of bioaerosols are not clearly understood. To screen the effects of climate change on aerosol microbial composition and its consequences for human health, it is first essential to develop standards that recognize the existing microbial components and how they vary naturally. Bioaerosol particles can be considered an information-rich unit comprising diverse cellular and protein materials emitted by humans, animals, and plants. Hence, no single standard technique can satisfactorily extract the required information about bioaerosols. To account for these issues, metagenomics, mass spectrometry, and biological and chemical analyses can be combined with climatic studies to understand the physical and biological relationships among bioaerosols. This can be achieved by strengthening interdisciplinary teamwork in biology, chemistry, earth science, and life sciences and by sharing knowledge and expertise globally. Thus, the coupled use of various advanced analytical approaches is the ultimate key to opening up the biological treasure that lies in the environment.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- Himalayan Environment Research Institute (HERI), Kathmandu 44602, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- Himalayan Environment Research Institute (HERI), Kathmandu 44602, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| |
Collapse
|