1
|
Zhang T, Zheng M, Sun X, Chen H, Wang Y, Fan X, Pan Y, Quan J, Liu J, Wang Y, Lyu D, Chen S, Zhu T, Chai F. Environmental impacts of three Asian dust events in the northern China and the northwestern Pacific in spring 2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160230. [PMID: 36395839 DOI: 10.1016/j.scitotenv.2022.160230] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In March 2021, China experienced three dust events (Dust-1, 2, 3), especially the first of which was reported as the strongest one in recent ten years. Their environmental impacts have received great attention, demanding comprehensive study to assess such impacts quantitatively. Multiple advanced measurement methods, including satellite, ground-based lidar, online aerosol speciation instrument, and biogeochemical Argo float, were applied to examine and compare the transport paths, optical and chemical properties, and impacts of these three dust events on urban air quality and marine ecosystem. The results showed that Dust-1 exhibited the largest impacts on urban area, increasing PM10 concentration in Beijing, Shuozhou, and Shijiazhuang up to 7525, 3819, and 2992 μg m-3, respectively. However, due to fast movement of the Mongolian low-pressure cyclone, the duration of northwest wind over the land was quite short (e.g., only 10 h in Beijing), which prevented the transport of dust plume to the northwestern Pacific, resulting in limited impact on the ocean. Dust-2 and Dust-3, though weaker in intensity, were transported directly to the sea, and led to a substantial increase in chlorophyll-a concentration (up to near 3 times) in the northwestern Pacific, comparing to climatological value. This indicates that the impacts of dust events on ocean was not necessarily and positively correlated to their impacts on land. Based on the analyses of land-ocean-space integrated observational data and synoptic systems, this study examined how marine ecosystem responded to three significant Asian dust events in spring 2021 and quantitatively assessed the overall impacts of mega dust storms both on land and ocean, which could also provide an interdisciplinary research methodology for future research on strong aerosol emission events such as wildfire and volcanic eruption.
Collapse
Affiliation(s)
- Tianle Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoguang Sun
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Huanhuan Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Xuehua Fan
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Yubing Pan
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Jiannong Quan
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Junyi Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yinan Wang
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Daren Lyu
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shuangling Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fei Chai
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
2
|
A Comparison of the Different Stages of Dust Events over Beijing in March 2021: The Effects of the Vertical Structure on Near-Surface Particle Concentration. REMOTE SENSING 2021. [DOI: 10.3390/rs13183580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mineral dust is of great importance to climate change, air quality, and human health. In this study, multisource data, including the reanalysis data and remote sensing data, were used to compare the three dust events that occurred in the March of 2021 over Beijing and reveal the effects of atmospheric vertical structure on near-surface dust concentration. The combined effect of the Mongolian cyclone and a wide persistent cold-front induced two events (E1: from March 15 to 16 and E3: from March 28 to 29). E1 was more intense, more extensive, and longer-lasting than E3 due to the combination of the stronger Mongolian cyclone, slower high/cold surface pressure, and the low-level jet. However, under the appropriate configurations of temperature and pressure fields between high and low altitudes, weak updrafts were still induced and could elevate dust up to 850 hPa, as occurred during E2 on March 22 and 23. The dust emission was inferior to E1 and E3, which contributes to the low dust concentration near the surface in E2. On the other hand, the downdraft strength directly affected both the vertical distribution of dust and the concentration of surface particles. There was a strong temporal consistency between the occurrence of the downdraft and the dust touchdown. In E1, the continuous strong downdraft caused the maximum dust concentration to be above 4000 μg/m3 at around 200 m. In contrast, the maximum height of the dust mass concentration in E3 occurred at about 800 m due to the transient downdraft, which weakened its effect on surface visibility. Besides, the weak vertical motion in E2 caused most of the dust to become suspended in the air. Overall, the large dust emission resulted from active updrafts in the source region, and the lengthy strong downdrafts led to the ultrahigh particle concentration near the surface.
Collapse
|
3
|
Finite Element Solution of the Corona Discharge of Wire-Duct Electrostatic Precipitators at High Temperatures—Numerical Computation and Experimental Verification. MATHEMATICS 2020. [DOI: 10.3390/math8091406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Global warming is the greatest challenge faced by humankind, and the only way to reduce or totally eliminate its effects is by minimizing CO2 emissions. Electrostatic precipitators are very useful as a means to reduce emissions from heavy industry factories. This paper aims to examine the performance of wire-duct electrostatic precipitators (WDESP) as affected by high-temperature incoming gases with a varying number of discharge wires while increasing their radius. The precipitator performance is expressed in terms of the corona onset voltage on the stressed wires and the corona current–voltage (I–V) characteristic of the precipitators working with incoming gases at high temperatures. The start of the corona onset voltage on the surface of the discharge wires is calculated for the precipitators under high temperatures based on the standard of the self-repeat of avalanches’ electrons developing on the surface of the stressed wires at high temperatures. For this, calculating the electrostatic field in the precipitators with single- and multi-discharge wires due to the stressed wire with the use of the well-known charge simulation method (CSM) with high-temperature incoming gases is important. The modeling of corona I–V characteristics is adopted using the finite element method (FEM) for single- and multi- (3-, 5-, and 7-) discharge wires of WDESP with high-temperature incoming gases. Additionally, the electrostatic field, potential, and space charge of WDESP are calculated by a simultaneous solution of equations of Poisson, current density, and the continuity current density. A WDESP was set up in the Laboratory of High Voltage Engineering of Czech Technical University (CTU) in Prague, the Czech Republic, to measure the corona onset voltage values and corona I–V characteristics for different WDESP configurations at high temperatures with a varying number of discharge wires while increasing their radius. The calculated values of the corona onset voltage based on CSM and the calculated corona I–V characteristics based on FEM agree reasonably with those measured experimentally with high-temperature WDESP.
Collapse
|