1
|
Rozwalak P, Podkowa P, Buda J, Niedzielski P, Kawecki S, Ambrosini R, Azzoni RS, Baccolo G, Ceballos JL, Cook J, Di Mauro B, Ficetola GF, Franzetti A, Ignatiuk D, Klimaszyk P, Łokas E, Ono M, Parnikoza I, Pietryka M, Pittino F, Poniecka E, Porazinska DL, Richter D, Schmidt SK, Sommers P, Souza-Kasprzyk J, Stibal M, Szczuciński W, Uetake J, Wejnerowski Ł, Yde JC, Takeuchi N, Zawierucha K. Cryoconite - From minerals and organic matter to bioengineered sediments on glacier's surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150874. [PMID: 34627905 DOI: 10.1016/j.scitotenv.2021.150874] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Cryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied. The major purpose of our study is the presentation and description of morphological diversity, chemical and photoautotrophs composition, and organic matter content of cryoconite sampled from 33 polar and mountain glaciers around the globe. Observations revealed that cryoconite is represented by various morphologies including loose and granular forms. Granular cryoconite includes smooth, rounded, or irregularly shaped forms; with some having their surfaces covered by cyanobacteria filaments. The occurrence of granules increased with the organic matter content in cryoconite. Moreover, a major driver of cryoconite colouring was the concentration of organic matter and its interplay with minerals. The structure of cyanobacteria and algae communities in cryoconite differs between glaciers, but representatives of cyanobacteria families Pseudanabaenaceae and Phormidiaceae, and algae families Mesotaeniaceae and Ulotrichaceae were the most common. The most of detected cyanobacterial taxa are known to produce polymeric substances (EPS) that may cement granules. Organic matter content in cryoconite varied between glaciers, ranging from 1% to 38%. The geochemistry of all the investigated samples reflected local sediment sources, except of highly concentrated Pb and Hg in cryoconite collected from European glaciers near industrialized regions, corroborating cryoconite as element-specific collector and potential environmental indicator of anthropogenic activity. Our work supports a notion that cryoconite may be more than just simple sediment and instead exhibits complex structure with relevance for biodiversity and the functioning of glacial ecosystems.
Collapse
Affiliation(s)
- Piotr Rozwalak
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland; Geohazards Research Unit, Institute of Geology, Adam Mickiewicz University, Poznan, Poland
| | - Paweł Podkowa
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | | | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Roberto S Azzoni
- Department of Earth Sciences, "Ardito Desio", University of Milan, Milan, Italy
| | - Giovanni Baccolo
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Jorge L Ceballos
- Institute of Hydrology, Meteorology and Environmental Studies, IDEAM, Bogota, Colombia
| | - Joseph Cook
- Department of Environmental Sciences, Aarhus University, Aarhus, Denmark
| | - Biagio Di Mauro
- Institute of Polar Sciences, National Research Council, Venice, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, University of Milan, Milan, Italy; Laboratoire d'Ecologie Alpine, University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Dariusz Ignatiuk
- University of Silesia in Katowice, Institute of Earth Sciences, Bedzinska 60, 41-200 Sosnowiec, Poland
| | - Piotr Klimaszyk
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Edyta Łokas
- Department of Mass Spectrometry, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Masato Ono
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Ivan Parnikoza
- State Institution National Antarctic Center of Ministry of Education and Science of Ukraine, Kyiv, Ukraine; Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mirosława Pietryka
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Science, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
| | - Francesca Pittino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Ewa Poniecka
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Dorota Richter
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Science, pl. Grunwaldzki 24a, 50-363 Wrocław, Poland
| | - Steven K Schmidt
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
| | - Pacifica Sommers
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
| | - Juliana Souza-Kasprzyk
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Marek Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Witold Szczuciński
- Geohazards Research Unit, Institute of Geology, Adam Mickiewicz University, Poznan, Poland
| | - Jun Uetake
- Field Research Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Łukasz Wejnerowski
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jacob C Yde
- Department of Environmental Sciences, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|