1
|
Yang X, Zhang G, Pan G, Fan G, Zhang H, Ge X, Du M. Significant contribution of carbonyls to atmospheric oxidation capacity (AOC) during the winter haze pollution over North China Plain. J Environ Sci (China) 2024; 139:377-388. [PMID: 38105063 DOI: 10.1016/j.jes.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 12/19/2023]
Abstract
Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM2.5 over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH3CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO2 and HO2, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.
Collapse
Affiliation(s)
- Xue Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan 250101, China; Shandong Jinan Ecological Environment Monitoring Center, Ji'nan 250101, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Guang Pan
- Shandong Jinan Ecological Environment Monitoring Center, Ji'nan 250101, China
| | - Guolan Fan
- Shandong Jinan Ecological Environment Monitoring Center, Ji'nan 250101, China
| | - Houyong Zhang
- Shandong Jinan Ecological Environment Monitoring Center, Ji'nan 250101, China
| | - Xuan Ge
- Shandong Jinan Ecological Environment Monitoring Center, Ji'nan 250101, China
| | - Mingyue Du
- Shandong Jinan Ecological Environment Monitoring Center, Ji'nan 250101, China
| |
Collapse
|
2
|
Venkateswaran V, Alali I, Unni AP, Weißflog J, Halitschke R, Hansson BS, Knaden M. Carbonyl products of ozone oxidation of volatile organic compounds can modulate olfactory choice behavior in insects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122542. [PMID: 37717892 DOI: 10.1016/j.envpol.2023.122542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Insects are a diverse group of organisms that provide important ecosystem services like pollination, pest control, and decomposition and rely on olfaction to perform these services. In the Anthropocene, increasing concentrations of oxidant pollutants such as ozone have been shown to corrupt odor-driven behavior in insects by chemically degrading e.g. flower signals or insect pheromones. The degradation, however, does not only result in a loss of signals, but also in a potential enrichment of oxidation products, predominantly small carbonyls. Whether and how these oxidation products affect insect olfactory perception remains unclear. We examined the effects of ozone-generated small carbonyls on the olfactory behavior of the vinegar fly Drosophila melanogaster. We compiled a broad collection of neurophysiologically relevant odorants for the fly from databases and literature and predicted the formation of the types of stable small carbonyl products resulting from the odorant's oxidation by ozone. Based on these predictions, we evaluated the olfactory detection and behavioral impact of the ten most frequently predicted carbonyl products in the fly using single sensillum recordings (SSRs) and behavioral tests. Our results demonstrate that the fly's olfactory system can detect the oxidation products, which then elicit either attractive or neutral behavioral responses, rather than repulsion. However, certain products alter behavioral choices to an attractive odor source of balsamic vinegar. Our findings suggest that the enrichment of small carbonyl oxidation products due to increased ozone levels can affect olfactory guided insect behavior. Our study underscores the implications for odor-guided foraging in insects and the essential ecosystem services they offer under carbonyl enriched environments.
Collapse
Affiliation(s)
- Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Ibrahim Alali
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Anjana P Unni
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Jerrit Weißflog
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Rayko Halitschke
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany.
| |
Collapse
|
3
|
Hua J, Cui Y, Guo L, Li H, Fan J, Li Y, Wang Y, Liu K, He Q, Wang X. Spatial characterization of HCHO and reapportionment of its secondary sources considering photochemical loss in Taiyuan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161069. [PMID: 36584945 DOI: 10.1016/j.scitotenv.2022.161069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Formaldehyde (HCHO) plays an important role in atmospheric ozone (O3) formation. To accurately identify the sources of HCHO, carbonyls and volatile organic compounds (VOCs) were measured at three urban sites (Taoyuan, TY-U; Jinyuan, JY-U; Xiaodian, XD-U) and a suburban site (Shanglan, SL-B) in Taiyuan during a high O3 period (from July 20 to August 3, 2020). The average mixing ratio of HCHO at XD-U (8.1 ± 2.8 ppbv) was comparable to those at TY-U (7.4 ± 2.1 ppbv) and JY-U (7.0 ± 2.3 ppbv) but higher (p < 0.01) than that at SL-B (4.9 ± 2.3 ppbv). HCHO contributed to 54.3-59.9 % of the total ozone formation potentials (OFPs) of non-methane hydrocarbons (NMHCs) at four sites. The diurnal variation of HCHO concentrations reached a peak value at 12:00-15:00, which may be attributed to the strong photochemical reaction. To obtain more accurate source results of HCHO under the condition of photochemical loss, the initial concentrations of NMHCs were estimated based on photochemical age parameterization and incorporated into the positive matrix factorization (PMF) model (termed IC-PMF). According to the IC-PMF results, secondary formation (SF) contributed the most to HCHO at XD-U (35.6 %) and SL-B (25.1 %), whereas solvent usage (SU) (40.9 %) and coking sources (CS) (36.0 %) were the major sources at TY-U and JY-U, respectively. Compared to the IC-PMF, the conventional PMF analysis based on the observed data underestimated the contributions of SU (100.5-154.2 %) and biogenic sources (BS) (28.5-324.7 %). Further reapportionment of secondary HCHO by multiple linear regression indicated that SU dominated the sources of HCHO at SL-B (28.3 %) and TY-U (41.7 %), while industrial emissions (IE) and CS contributed the most to XD-U (26.6 %) and JY-U (43.0 %) in Taiyuan from north to south, respectively.
Collapse
Affiliation(s)
- Jingya Hua
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yang Cui
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Lili Guo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Hongyan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jie Fan
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yanan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Kankan Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Qiusheng He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
4
|
Abstract
Landfill gas produces ozone precursors such as nitrogen oxides and formaldehyde when combusted in flares or stationary engines. Solid waste landfills are also the third largest anthropogenic source of methane in the United States. Methane is both a greenhouse gas and a tropospheric ozone precursor. Despite its low photochemical reactivity, methane may noticeably affect urban ozone if released in large quantities along with other organic compounds in landfill gas. A fine-scale 3D Eulerian chemical transport model was used to demonstrate that, under meteorological and background chemical conditions conducive to high ozone concentrations, typical emissions of ozone precursors from a single hypothetical landfill may result in persistent daytime additions to ozone of over 1 part per billion (ppb) by volume tens of kilometers downwind. Large leaks of landfill gas can enhance this ozone pollution by over a tenth of a ppb, and external sources of non-methane ozone precursors may further exacerbate this impact. In addition, landfill gas combustion may increase near-source exposure to toxic formaldehyde by well over half a ppb. In Southeast Michigan, the combined influence of several landfills upwind of key monitoring sites may contribute significantly to observed exceedances of the U.S. ozone standard.
Collapse
|