1
|
Sadiktsis I, de Oliveira Galvão MF, Mustafa M, Toublanc M, Ünlü Endirlik B, Silvergren S, Johansson C, Dreij K. A yearlong monitoring campaign of polycyclic aromatic compounds and other air pollutants at three sites in Sweden: Source identification, in vitro toxicity and human health risk assessment. CHEMOSPHERE 2023; 332:138862. [PMID: 37150457 DOI: 10.1016/j.chemosphere.2023.138862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Air pollution is a complex mixture of gases and particulate matter (PM) with local and non-local emission sources, resulting in spatiotemporal variability in concentrations and composition, and thus associated health risks. To study this in the greater Stockholm area, a yearlong monitoring campaign with in situ measurements of PM10, PM1, black carbon, NOx, O3, and PM10-sampling was performed. The locations included an Urban and a Rural background site and a Highway site. Chemical analysis of PM10 was performed to quantify monthly levels of polycyclic aromatic compounds (PACs), which together with other air pollution data were used for source apportionment and health risk assessment. Organic extracts from PM10 were tested for oxidative potential in human bronchial epithelial cells. Strong seasonal patterns were found for most air pollutants including PACs, with higher levels during the winter months than summer e.g., highest levels of PM10 were detected in March at the Highway site (33.2 μg/m3) and lowest in May at the Rural site (3.6 μg/m3). In general, air pollutant levels at the sites were in the order Highway > Urban > Rural. Multivariate analysis identified several polar PACs, including 6H-Benzo[cd]pyren-6-one, as possible discriminatory markers for these sites. The main sources of particulate pollution for all sites were vehicle exhaust and biomass burning emissions, although diesel exhaust was an important source at the Highway site. In vitro results agreed with air pollutant levels, with higher oxidative potential from the winter samples. Estimated lung cancer cases were in the order PM10 > NO2 > PACs for all sites, and with less evident seasonal differences than in vitro results. In conclusion, our study presents novel seasonal data for many PACs together with air pollutants more traditionally included in air quality monitoring. Moreover, seasonal differences in air pollutant levels correlated with differences in toxicity in vitro.
Collapse
Affiliation(s)
- Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Musatak Mustafa
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Michaël Toublanc
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Burcu Ünlü Endirlik
- Institute of Environmental Medicine, Karolinska Institute, Box 210, 171 77, Stockholm, Sweden; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Sanna Silvergren
- Environment and Health Administration, SLB, 104 20, Stockholm, Sweden
| | - Christer Johansson
- Environment and Health Administration, SLB, 104 20, Stockholm, Sweden; Department of Environmental Science, Stockholm University, 114 19, Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institute, Box 210, 171 77, Stockholm, Sweden.
| |
Collapse
|