1
|
Sorooshian A, Anderson B, Bauer SE, Braun RA, Cairns B, Crosbie E, Dadashazar H, Diskin G, Ferrare R, Flagan RC, Hair J, Hostetler C, Jonsson HH, Kleb MM, Liu H, MacDonald AB, McComiskey A, Moore R, Painemal D, Russell LM, Seinfeld JH, Shook M, Smith WL, Thornhill K, Tselioudis G, Wang H, Zeng X, Zhang B, Ziemba L, Zuidema P. AEROSOL-CLOUD-METEOROLOGY INTERACTION AIRBORNE FIELD INVESTIGATIONS: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2019; 100:1511-1528. [PMID: 33204036 PMCID: PMC7668289 DOI: 10.1175/bams-d-18-0100.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
AbstractWe report on a multiyear set of airborne field campaigns (2005–16) off the California coast to examine aerosols, clouds, and meteorology, and how lessons learned tie into the upcoming NASA Earth Venture Suborbital (EVS-3) campaign: Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE; 2019–23). The largest uncertainty in estimating global anthropogenic radiative forcing is associated with the interactions of aerosol particles with clouds, which stems from the variability of cloud systems and the multiple feedbacks that affect and hamper efforts to ascribe changes in cloud properties to aerosol perturbations. While past campaigns have been limited in flight hours and the ability to fly in and around clouds, efforts sponsored by the Office of Naval Research have resulted in 113 single aircraft flights (>500 flight hours) in a fixed region with warm marine boundary layer clouds. All flights used nearly the same payload of instruments on a Twin Otter to fly below, in, and above clouds, producing an unprecedented dataset. We provide here i) an overview of statistics of aerosol, cloud, and meteorological conditions encountered in those campaigns and ii) quantification of model-relevant metrics associated with aerosol–cloud interactions leveraging the high data volume and statistics. Based on lessons learned from those flights, we describe the pragmatic innovation in sampling strategy (dual-aircraft approach with combined in situ and remote sensing) that will be used in ACTIVATE to generate a dataset that can advance scientific understanding and improve physical parameterizations for Earth system and weather forecasting models, and for assessing next-generation remote sensing retrieval algorithms.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, and Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
| | | | - Susanne E Bauer
- NASA Goddard Institute for Space Studies, New York, New York
| | - Rachel A Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, New York
| | - Ewan Crosbie
- NASA Langley Research Center, and Science Systems and Applications, Inc., Hampton, Virginia
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona
| | | | | | - Richard C Flagan
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | | | | | - Mary M Kleb
- NASA Langley Research Center, Hampton, Virginia
| | - Hongyu Liu
- National Institute of Aerospace, Hampton, Virginia
| | - Alexander B MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona
| | | | | | - David Painemal
- NASA Langley Research Center, and Science Systems and Applications, Inc., Hampton, Virginia
| | - Lynn M Russell
- Scripps Institution of Oceanography, University of California, La Jolla, California
| | - John H Seinfeld
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | | | - Kenneth Thornhill
- NASA Langley Research Center, and Science Systems and Applications, Inc., Hampton, Virginia
| | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona
| | - Bo Zhang
- National Institute of Aerospace, Hampton, Virginia
| | - Luke Ziemba
- NASA Langley Research Center, Hampton, Virginia
| | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| |
Collapse
|