1
|
Han Y, Lee J, Haiping G, Kim KH, Wanxi P, Bhardwaj N, Oh JM, Brown RJC. Plant-based remediation of air pollution: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113860. [PMID: 34626947 DOI: 10.1016/j.jenvman.2021.113860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/26/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Humans face threats from air pollutants present in both indoor and outdoor environments. The emerging role of plants in remediating the atmospheric environment is now being actively investigated as a possible solution for this problem. Foliar surfaces of plants (e.g., the leaves of cotton) can absorb a variety of airborne pollutants (e.g., formaldehyde, benzene, trimethylamine, and xylene), thereby reducing their concentrations in indoor environments. Recently, theoretical and experimental studies have been conducted to offer better insights into the interactions between plants and the surrounding air. In our research, an overview on the role of plants in reducing air pollution (often referred to as phytoremediation) is provided based on a comprehensive literature survey. The major issues for plant-based research for the reduction of air pollution in both outdoor and indoor environments are discussed in depth along with future challenges. Analysis of the existing data confirms the effectiveness of phytoremediation in terms of the absorption and purification of pollutants (e.g., by the leaves and roots of plants and trees), while being controlled by different variables (e.g., pore characteristics and planting patterns). Although most lab-scale studies have shown that plants can effectively absorb pollutants, it is important for such studies to reflect the real-world conditions, especially with the influence of human activities. Under such conditions, pollutants are to be replenished continually while the plant surface area to ambient atmosphere volume ratio vastly decreases (e.g., relative to lab-based experiments). The replication of such experimental conditions is the key challenge in this field of research. This review is expected to offer valuable insights into the innate ability of various plants in removing diverse pollutants (such as formaldehyde, benzene, and particulate matter) under different environmental settings.
Collapse
Affiliation(s)
- Yang Han
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Gu Haiping
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Peng Wanxi
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| | - Jong-Min Oh
- Department of Environmental Science & Environmental Engineering, Kyung Hee University, Suwon, 17104, South Korea
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| |
Collapse
|
2
|
Wang H, Liu B, Liu X, Lu C, Deng J, You Z, Li S. Study on convection and dispersion characteristics of dense gases in urban environment considering trees. J Loss Prev Process Ind 2021. [DOI: 10.1016/j.jlp.2021.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Effect of Street Canyon Shape and Tree Layout on Pollutant Diffusion under Real Tree Model. SUSTAINABILITY 2020. [DOI: 10.3390/su12052105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trees have a significant impact on the airflow and pollutant diffusion in the street canyon and are directly related to the comfort and health of residents. In this paper, OpenFOAM is used for simulating the airflow and pollutant diffusion in the street canyon at different height–width ratios and tree layouts. Different from the drag source model in the previous numerical simulation, this study focuses on the characterization of the blocking effect of tree branches on airflow by using more precise and real tree models. It is found that the airflow is blocked by the tree branches in the canopy, resulting in slower airflow and varying velocity direction; the air flows in the pore area between trees more easily, and the vortex centers are different in cases where the street canyon shape and tree layout are different. Low-velocity airflow distributes around and between two tree canopies, especially under the influence of two trees with different spacing. At the height of the pedestrian, the tree branches change the vortex structure of airflow, and thereby high pollutant concentration distribution on both sides of the bottom of the leeward side of the street canyon changes constantly. In the street canyon, the small change in tree spacing has a very limited influence on the pollutant concentration. The street canyon has the lowest average pollutant concentration at the largest y-axis direction spacing between two trees.
Collapse
|
4
|
Vervoort R, Blocken B, van Hooff T. Reduction of particulate matter concentrations by local removal in a building courtyard: Case study for the Delhi American Embassy School. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:657-680. [PMID: 31195277 DOI: 10.1016/j.scitotenv.2019.05.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Exposure to particulate matter (PM) is strongly linked to human morbidity and mortality, where higher exposure entails higher all-cause daily mortality and increased long-term risk of cardiopulmonary mortality. The objective of this study is to demonstrate how and to what extent the local removal of PM2.5 can lead to reduced exposure for the children and teachers in the naturally ventilated courtyard of the American Embassy School (AES) high school building in Delhi. The study is performed by computational fluid dynamics (CFD) with the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations in combination with the realizable k-ε turbulence model on a very high resolution grid. First, CFD validation is performed using wind-tunnel experiments of the flow pattern in and above a generic single street canyon. Next, the case study is conducted where four commercially available electrostatic precipitation (ESP) units are installed at different positions inside the courtyard and the resulting performance is evaluated. PM2.5 dispersion is modeled with an Eulerian advection-diffusion equation. It is shown that the best ESP positions yield overall volume-averaged PM2.5 concentration reductions up to 34.1% in the courtyard's corridors, demonstrating the proposed mitigation strategy to be effective. Perspectives for further reduction of the PM concentrations and the related reduction of health risks are discussed.
Collapse
Affiliation(s)
- R Vervoort
- Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, the Netherlands.
| | - B Blocken
- Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, the Netherlands; Building Physics Section, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, bus 2447, 3001 Leuven, Belgium
| | - T van Hooff
- Building Physics Section, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, bus 2447, 3001 Leuven, Belgium; Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, the Netherlands
| |
Collapse
|
5
|
Abstract
The Atmosphere Special Issue “Recent Advances in Urban Ventilation Assessment and FlowModelling” collects twenty-one original papers and one review paper published in 2017[...]
Collapse
|
6
|
Hong B, Qin H, Jiang R, Xu M, Niu J. How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2862. [PMID: 30558174 PMCID: PMC6313354 DOI: 10.3390/ijerph15122862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 12/03/2022]
Abstract
This study used computational fluid dynamics (CFD) models, coupling with a standard k-ε model based on the Reynolds-averaged Navier-Stokes (RANS) approach and a revised generalized drift flux model, to investigate effects of outdoor trees on indoor PM1.0, PM2.5, and PM10 dispersion in a naturally ventilated auditorium. Crown volume coverage (CVC) was introduced to quantify outdoor trees. Simulations were performed on various CVCs, oncoming wind velocities and window opening sizes (wall porosities were 3.5 and 7.0%, respectively, for half and fully opened windows). The results were as follows: (1) A vortex formed inside the auditorium in the baseline scenario, and the airflow recirculation created a well-mixed zone with little variation in particle concentrations. There was a noticeable decrease in indoor PM10 with the increasing distance from the inlet boundary due to turbulent diffusion. (2) Assuming that pollution sources were diluted through the inlet, average indoor particle concentrations rose exponentially with increasing oncoming wind speed. PM10 changed most significantly due to turbulent diffusion and surface deposition reduction intensified by the increased wind velocity. (3) Increasing the window opening improved indoor cross-ventilation, thus reducing indoor particle concentrations. (4) When 2.87 m³/m² ≤ CVC ≤ 4.73 m³/m², indoor PM2.5 could meet requirements of the World Health Organization's air quality guidelines (IT-3) for 24-hour mean concentrations; and (5) average indoor particle concentrations had positive correlations with natural ventilation rates (R² = 0.9085, 0.961, 0.9683 for PM1.0, PM2.5, and PM10, respectively, when the wall porosity was 3.5%; R² = 0.9158, 0.9734, 0.976 for PM1.0, PM2.5, and PM10, respectively, when the wall porosity was 7.0%).
Collapse
Affiliation(s)
- Bo Hong
- College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China.
| | - Hongqiao Qin
- College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China.
| | - Runsheng Jiang
- College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China.
| | - Min Xu
- College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China.
| | - Jiaqi Niu
- College of Landscape Architecture & Arts, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Are Green Walls Better Options than Green Roofs for Mitigating PM10 Pollution? CFD Simulations in Urban Street Canyons. SUSTAINABILITY 2018. [DOI: 10.3390/su10082833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To examine the effect of green roofs (GRs) and green walls (GWs) on coarse particle (PM10) dispersion in urban street canyons, a computational fluid dynamics (CFD) simulation was conducted with a Reynolds-averaged Navier-Stokes (RANS) model and a revised generalized drift flux model. Simulations were performed with different aspect ratios (H/W = 0.5, 1.0, and 2.0), greenery coverage areas (S = 300, 600, and 900 m2), and leaf area densities (LADs = 1.0, 3.5, 6.0 m2/m3). Results indicate that: (1) GRs and GWs all had the reduction ability of PM10 at the pedestrian level; (2) Averaged concentrations of PM10 in GWs and GRs varied little as LAD changed in H/W = 0.5 and 1.0. When H/W = 2.0, the aerodynamic effects of GRs increased since airflow was enhanced within street canyons, resulting in the increasing concentrations in GRs compared with non-greening scenarios; (3) Given equal greenery coverage area and aspect ratio, GWs are more effective in reducing street-canyon PM10, and the averaged concentrations declined with increasing LADs and greenery coverage areas, especially the H/W; (4) At the pedestrian level, the reduction ratio of GRs is greater than that of GWs with the maximum value of 17.1% for H/W = 0.5. However, where H/W = 1.0 and 2.0, the concentrations within GWs are lower than GRs, with maximum reduction ratios of 29.3% and 43.8%, respectively.
Collapse
|