1
|
Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL Results. ATOMS 2021. [DOI: 10.3390/atoms9010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Analysis of Stark-broadened spectral line profiles is a powerful, non-intrusive diagnostic technique to extract the electron density of high-energy-density plasmas. The increasing number of applications and availability of spectroscopic measurements have stimulated new research on line broadening theory calculations and computer simulations, and their comparison. Here, we discuss a comparative study of Stark-broadened line shapes calculated with computer simulations using non-interacting and interacting particles, and with the multi-electron radiator line shape MERL code. In particular, we focus on Ar K-shell X-ray line transitions in He- and H-like ions, i.e., Heα, Heβ and Heγ in He-like Ar and Lyα, Lyβ and Lyγ in H-like Ar. These lines have been extensively used for X-ray spectroscopy of Ar-doped implosion cores in indirect- and direct-drive inertial confinement fusion (ICF) experiments. The calculations were done for electron densities ranging from 1023 to 3×1024 cm−3 and a representative electron temperature of 1 keV. Comparisons of electron broadening only and complete line profiles including electron and ion broadening effects, as well as Doppler, are presented. Overall, MERL line shapes are narrower than those from independent and interacting particles computer simulations performed at the same conditions. Differences come from the distinctive treatments of electron broadening and are more pronounced in α line transitions. We also discuss the recombination broadening mechanism that naturally emerges from molecular dynamics simulations and its influence on the line shapes. Furthermore, we assess the impact of employing either molecular dynamics or MERL line profiles on the diagnosis of core conditions in implosion experiments performed on the OMEGA laser facility.
Collapse
|
2
|
Abstract
We report on hydrogen line shape calculations in the presence of an external magnetic field, at conditions such that the quadratic Zeeman effect is important. The latter is described through a term proportional to B2 in the Hamiltonian, accounting for atomic diamagnetism. It provides a shift and an asymmetry on Lorentz triplets, and it leads to the occurrence of forbidden components. Motivated by investigations performed at the fifth edition of the Spectral Line Shape in Plasmas (SLSP5) code comparison workshop, we perform new calculations of hydrogen Lyman line profiles. Field values representative of magnetized white dwarf atmosphere conditions are taken. The calculations are done using a computer simulation technique, designed for Stark broadening modeling. A discussion of the results is done in the framework of plasma diagnostics.
Collapse
|