1
|
Berngruber M, Bosworth DJ, Herrera-Sancho OA, Anasuri VSV, Zuber N, Hummel F, Krauter J, Meinert F, Löw R, Schmelcher P, Pfau T. In Situ Observation of Nonpolar to Strongly Polar Atom-Ion Collision Dynamics. PHYSICAL REVIEW LETTERS 2024; 133:083001. [PMID: 39241731 DOI: 10.1103/physrevlett.133.083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 09/09/2024]
Abstract
The onset of collision dynamics between an ion and a Rydberg atom is studied in a regime characterized by a multitude of collision channels. These channels arise from coupling between a nonpolar Rydberg state and numerous highly polar Stark states. The interaction potentials formed by the polar Stark states show a substantial difference in spatial gradient compared to the nonpolar state leading to a separation of collisional timescales, which is observed in situ. For collision energies in the range of k_{B}μK to k_{B}K, the dynamics exhibit a counterintuitive dependence on temperature, resulting in faster collision dynamics for cold-initially "slow"-systems. Dipole selection rules enable us to prepare the collision pair on the nonpolar potential in a highly controlled manner, which determines occupation of the collision channels. The experimental observations are supported by semiclassical simulations, which model the pair state evolution and provide evidence for tunable nonadiabatic dynamics.
Collapse
Affiliation(s)
| | | | - O A Herrera-Sancho
- 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José, Costa Rica
- Instituto de Investigaciones en Arte, Universidad de Costa Rica, 2060 San Pedro, San José, Costa Rica
- Centro de Investigación en Ciencias Atómicas, Nucleares y Moleculares, Universidad de Costa Rica, 2060 San Pedro, San José, Costa Rica
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bai J, Jiao Y, Song R, Li Z, Zhao J, Jia S. Dissociation of ultracold cesium Rydberg-ground molecules. J Chem Phys 2023; 159:194302. [PMID: 37966003 DOI: 10.1063/5.0175109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
We report the experimental measurements of the decay rate of polar cesium nD5/2 - 6S1/2 Rydberg-ground molecules with a large principal quantum number range of 35 ≤ n ≤ 40. Rydberg molecules are prepared employing the method of two-photon photoassociation and the molecular (atomic) ions, due to autoionization (blackbody photoionization), are detected with a microchannel plate detector. The decay rate Γ of the vibrational ground state of the deep and shadow bound molecules for triplet (TΣ) and mixed singlet-triplet (S,TΣ) are measured by fitting the molecular population with the exponential function. Comparing with the parent atom, the decay rate of the polar Rydberg-ground molecule shows an obvious increase with a magnitude of a few μs. The possible dissociation mechanism of polar Rydberg-ground molecules including a collisional decay, blackbody induced decay, and coupling of adjacent Rydberg states and tunneling decay are discussed in detail. The theoretical model is induced to simulate the measurements, showing agreement.
Collapse
Affiliation(s)
- Jingxu Bai
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Yuechun Jiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Rong Song
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Zhenhua Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Jianming Zhao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
3
|
Hollerith S, Zeiher J. Rydberg Macrodimers: Diatomic Molecules on the Micrometer Scale. J Phys Chem A 2023; 127:3925-3939. [PMID: 36977279 PMCID: PMC10184126 DOI: 10.1021/acs.jpca.2c08454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Controlling molecular binding at the level of single atoms is one of the holy grails of quantum chemistry. Rydberg macrodimers─bound states between highly excited Rydberg atoms─provide a novel perspective in this direction. Resulting from binding potentials formed by the strong, long-range interactions of Rydberg states, Rydberg macrodimers feature bond lengths in the micrometer regime, exceeding those of conventional molecules by orders of magnitude. Using single-atom control in quantum gas microscopes, the unique properties of these exotic states can be studied with unprecedented control, including the response to magnetic fields or the polarization of light in their photoassociation. The high accuracy achieved in spectroscopic studies of macrodimers makes them an ideal testbed to benchmark Rydberg interactions, with direct relevance to quantum computing and information protocols where these are employed. This review provides a historic overview and summarizes the recent findings in the field of Rydberg macrodimers. Furthermore, it presents new data on interactions between macrodimers, leading to a phenomenon analogous to Rydberg blockade at the level of molecules, opening the path toward studying many-body systems of ultralong-range Rydberg molecules.
Collapse
Affiliation(s)
- Simon Hollerith
- Max-Planck-Institut
für Quantenoptik, 85748 Garching, Germany
| | - Johannes Zeiher
- Max-Planck-Institut
für Quantenoptik, 85748 Garching, Germany
- Munich
Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| |
Collapse
|
4
|
Zou YQ, Berngruber M, Anasuri VSV, Zuber N, Meinert F, Löw R, Pfau T. Observation of Vibrational Dynamics of Orientated Rydberg-Atom-Ion Molecules. PHYSICAL REVIEW LETTERS 2023; 130:023002. [PMID: 36706402 DOI: 10.1103/physrevlett.130.023002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/17/2022] [Indexed: 06/18/2023]
Abstract
Vibrational dynamics in conventional molecules usually takes place on a timescale of picoseconds or shorter. A striking exception are ultralong-range Rydberg molecules, for which dynamics is dramatically slowed down as a consequence of the huge bond length of up to several micrometers. Here, we report on the direct observation of vibrational dynamics of a recently observed Rydberg-atom-ion molecule. By applying a weak external electric field of a few millivolts per centimeter, we are able to control the orientation of the photoassociated ultralong-range Rydberg molecules and induce vibrational dynamics by quenching the electric field. A high resolution ion microscope allows us to detect the molecule's orientation and its temporal vibrational dynamics in real space. Our study opens the door to the control of molecular dynamics in Rydberg molecules.
Collapse
Affiliation(s)
- Yi-Quan Zou
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Moritz Berngruber
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Viraatt S V Anasuri
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Nicolas Zuber
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Florian Meinert
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Robert Löw
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tilman Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Observation of a molecular bond between ions and Rydberg atoms. Nature 2022; 605:453-456. [PMID: 35585342 DOI: 10.1038/s41586-022-04577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
Atoms with a highly excited electron, called Rydberg atoms, can form unusual types of molecular bonds1-4. The bonds differ from the well-known ionic and covalent bonds5,6 not only by their binding mechanisms, but also by their bond lengths ranging up to several micrometres. Here we observe a new type of molecular ion based on the interaction between the ionic charge and a flipping-induced dipole of a Rydberg atom with a bond length of several micrometres. We measure the vibrational spectrum and spatially resolve the bond length and the angular alignment of the molecule using a high-resolution ion microscope7. As a consequence of the large bond length, the molecular dynamics is extremely slow. These results pave the way for future studies of spatio-temporal effects in molecular dynamics (for example, beyond Born-Oppenheimer physics).
Collapse
|