1
|
Pozdeev AS, Rublev P, Boldyrev AI. Bismuth Infrared Star: Being at a Glance. Chemistry 2023:e202301663. [PMID: 37496160 DOI: 10.1002/chem.202301663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Bismuth polycations have garnered significant attention from researchers due to their extraordinary and counter-intuitive structures and stoichiometries. Despite extensive experimental and theoretical investigations, understanding of the bonding in such clusters remains insufficient. An AdNDP bonding analysis was conducted to elucidate the bonding characteristics using both homoatomic and heteroatomic bismuth clusters with various stoichiometries. Analysis of the calculated nucleus-independent chemical shift data confirmed the aromatic nature of these species. Universal bonding patterns were identified that can be applied to a range of homoatomic and heteroatomic bismuth clusters. Additionally, calculations of absorbance and fluorescence spectra were performed to gain insights into the near-infrared emission and establish a potential correlation between absorbance and the identified bonding patterns.
Collapse
Affiliation(s)
- Anton S Pozdeev
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, USA
| | - Pavel Rublev
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, USA
| | - Alexander I Boldyrev
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, USA
| |
Collapse
|
2
|
Das P, Chattaraj PK. BSinGe4−n+ (n = 0−2): prospective systems containing planar tetracoordinate boron (ptB). J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Structure and Bonding in Planar Hypercoordinate Carbon Compounds. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The term hypercoordination refers to the extent of the coordination of an element by its normal value. In the hypercoordination sphere, the element can achieve planar and/or non-planar molecular shape. Hence, planar hypercoordinate carbon species violate two structural rules: (i) The highest coordination number of carbon is four and (ii) the tetrahedral orientation by the connected elements and/or groups. The unusual planar orientations are mostly stabilized by the electronic interactions of the central atom with the surrounding ligands. In this review article, we will talk about the current progress in the theoretical prediction of viable planar hypercoordinate carbon compounds. Primary knowledge of the planar hypercoordinate chemistry will lead to its forthcoming expansion. Experimental and theoretical interests in planar tetracoordinate carbon (ptC), planar pentacoordinate carbon (ppC), and planar hexacoordinate carbon (phC) are continued. The proposed electronic and mechanical strategies are helpful for the designing of the ptC compounds. Moreover, the 18-valence electron rule can guide the design of new ptC clusters computationally as well as experimentally. However, the counting of 18-valence electrons is not a requisite condition to contain a ptC in a cluster. Furthermore, this ptC idea is expanded to the probability of a greater coordination number of carbon in planar orientations. Unfortunately, until now, there are no such logical approaches to designing ppC, phC, or higher-coordinate carbon molecules/ions. There exist a few global minimum structures of phC clusters identified computationally, but none have been detected experimentally. All planar hypercoordinate carbon species in the global minima may be feasible in the gas phase.
Collapse
|
4
|
Das P, Patra SG, Chattaraj PK. CB 6Al 0/+: Planar hexacoordinate boron (phB) in the global minimum structure. Phys Chem Chem Phys 2022; 24:22634-22644. [PMID: 36106478 DOI: 10.1039/d2cp03532d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report for the first time the presence of a planar hexacoordinate boron (phB) atom in the global minimum energy structure of a neutral cluster system. The potential energy surface (PES) has been explored for CB6Al0/+/- systems using density functional theory (DFT). The global minima of CB6Al (1a) and CB6Al+ (1b) contain a phB center. However, the global minimum of CB6Al- (1c) does not have a phB atom. The CCSD(T)/aug-cc-pVTZ level of theory has been applied to compute the relative energies of the low-lying isomers with respect to the 1a and 1b structures of CB6Al and CB6Al+ systems, respectively. The exploration of the PES of CB60/+/- systems indicates that the global minima do not contain a phB atom. However, the incorporation of an aluminium (Al) atom into the CB6 moiety produces structures containing a phB center in the CB6Al0/+ systems. Hence, the Al metal has an important role in attaining a planar geometry having a hexacoordinate boron center. The dynamical stability of CB6Al (1a) and CB6Al+ (1b) was confirmed from the atom-centered density matrix propagation (ADMP) simulation over 20 ps of time at temperatures of 300 K and 400 K. The natural charge computations showed that the charges on the phB are almost zero in both systems. The 1a structure has σ/π-dual aromaticity as predicted from the nucleus independent chemical shift (NICS) values and the gauge-including magnetically induced ring current (GIMIC).
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Shanti Gopal Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
5
|
Pentacoordinate Carbon Atoms in a Ferrocene Dication Derivative—[Fe(Si2-η5-C5H2)2]2+. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pentacoordinate carbon atoms are theoretically predicted here in a ferrocene dication derivative in the eclipsed-(1; C2v), gauche-(2; C2) and staggered-[Fe(Si2-η5-C5H2)2]2+(3; C2h) forms for the first time. Energetically, the relative energy gaps for 2 and 3 range from −3.06 to 16.74 and −2.78 to 40.34 kJ mol−1, respectively, when compared to the singlet electronic state of 1 at different levels. The planar tetracoordinate carbon (ptC) atom in the ligand Si2C5H2 becomes a pentacoordinate carbon upon complexation. The ligand with a ptC atom was predicted to be both a thermodynamically and kinetically stable molecule by some of us in our earlier theoretical works. Natural bond orbital and adaptive natural density partitioning analyses confirm the pentacoordinate nature of carbon in these three complexes (1–3). Although they are hypothetical at the moment, they support the idea of “hypercoordinate metallocenes” within organometallic chemistry. Moreover, ab initio molecular dynamics simulations carried out at 298 K temperature for 2000 fs suggest that these molecules are kinetically stable.
Collapse
|
6
|
Das P, Khatun M, Anoop A, Chattaraj PK. CSi nGe 4-n2+ ( n = 1-3): prospective systems containing planar tetracoordinate carbon (ptC). Phys Chem Chem Phys 2022; 24:16701-16711. [PMID: 35770562 DOI: 10.1039/d2cp01494g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) based calculations have been carried out to explore the potential energy surface (PES) of CSinGe4-n2+/+/0 (n = 1-3) systems. The global minimum structures in the di-cationic states (1a, 1b, and 1c) contain a planar tetracoordinate carbon (ptC). For the CSi2Ge22+ system, the second stable isomer (2b) also contains a ptC with 0.67 kcal mol-1 higher energy than that of the 1b ptC isomer. The global minima of the neutral and mono-cationic states of the designed systems are not planar. The 1a, 1b, and 1c structures follow the 18 valence electron rule. The relative energies of the low-lying isomers of CSiGe32+, CSi2Ge22+, and CSi3Ge2+ systems with respect to the global minima were calculated using the CCSD(T)/aug-cc-pVTZ method. Ab initio molecular dynamics simulations for 50 ps time indicate that all the global minimum structures (1a, 1b, and 1c) are kinetically stable at 300 K and 500 K temperatures. The natural bond orbital (NBO) analysis suggests strong σ-acceptance of the ptC from the four surrounding atoms and simultaneously π-donation occurs from the ptC center. The nucleus independent chemical shift (NICS) showed σ/π-dual aromaticity. We hope that the designed di-cationic systems may be viable in the gas phase.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Maya Khatun
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
7
|
Karton A, Thimmakondu VS. From Molecules with a Planar Tetracoordinate Carbon to an Astronomically Known C 5H 2 Carbene. J Phys Chem A 2022; 126:2561-2568. [PMID: 35426667 PMCID: PMC9442649 DOI: 10.1021/acs.jpca.2c01261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Ethynylcyclopropenylidene
(2), an isomer of C5H2, is a known
molecule in the laboratory and has
recently been identified in Taurus Molecular Cloud-1 (TMC-1). Using
high-level coupled-cluster methods up to the CCSDT(Q)/CBS level of
theory, it is shown that two isomers of C5H2 with a planar tetracoordinate carbon (ptC) atom, (SP-4)-spiro[2.2]pent-1,4-dien-1,4-diyl
(11) and (SP-4)-spiro[2.2]pent-1,4-dien-1,5-diyl (13), serve as the reactive intermediates for the formation
of 2. Here, a theoretical connection has been established
between molecules containing ptC atoms (11 and 13) and a molecule (2) that is present nearly
430 light years away, thus providing evidence for the existence of
ptC species in the interstellar medium. The reaction pathways connecting
the transition states and the reactants and products have been confirmed
by intrinsic reaction coordinate calculations at the CCSDT(Q)/CBS//B3LYP-D3BJ/cc-pVTZ
level. While isomer 11 is non-polar (μ = 0), isomers 2 and 13 are polar, with dipole moment values
of 3.52 and 5.17 Debye at the CCSD(T)/cc-pVTZ level. Therefore, 13 is also a suitable candidate for both laboratory and radioastronomical
studies.
Collapse
Affiliation(s)
- Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, USA
| |
Collapse
|
8
|
Das P, Chattaraj PK. CSiGaAl 2 -/0 and CGeGaAl 2 -/0 having planar tetracoordinate carbon atoms in their global minimum energy structures. J Comput Chem 2022; 43:894-905. [PMID: 35322887 DOI: 10.1002/jcc.26845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
Density functional theory (DFT) is used to explore the structure, stability, and bonding in CSiGaAl2 -/0 and CGeGaAl2 -/0 systems having planar tetracoordinate carbon (ptC). The neutral systems have 17 valence electrons and the mono-anionic systems have 18 valence electrons. The ab initio molecular dynamics simulations for 2000 fs time at two different temperatures (300 and 500 K) supported the kinetic stability of the systems. From the natural bond orbital (NBO) analysis it is shown that there is a strong electron donation from the ligand atoms to the ptC atom. We have used Li+ ion for the neutralization of the mono-anionic systems and more interestingly it does not disrupt the planar structure. The most preferable site for binding of Li+ ion is along the AlAl bond in both of the mono-anionic systems. All the systems in this work have both σ and π aromaticity which is predicted from the computations of nucleus independent chemical shift (NICS). Although the anionic species obey the 18 valence electronic rule, the neutral systems break the rule with 17 valence electrons. However, both sets of systems are stable in the planar form. The bonding analysis of the systems includes molecular orbital, adaptive natural density partitioning (AdNDP), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF) basin, and aromaticity analyses. The energy decomposition analysis (EDA) determines the interaction of Li+ ion with CSiGaAl2 - and CGeGaAl2 - in Li@SiGaAl2 and Li@GeGaAl2 , respectively.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | |
Collapse
|
9
|
Abstract
We have explored the chemical space of BAl4Mg−/0/+ for the first time and theoretically characterized several isomers with interesting bonding patterns. We have used chemical intuition and a cluster building method based on the tabu-search algorithm implemented in the Python program for aggregation and reaction (PyAR) to obtain the maximum number of possible stationary points. The global minimum geometries for the anion (1a) and cation (1c) contain a planar tetracoordinate boron (ptB) atom, whereas the global minimum geometry for the neutral (1n) exhibits a planar pentacoordinate boron (ppB) atom. The low-lying isomers of the anion (2a) and cation (3c) also contain a ppB atom. The low-lying isomer of the neutral (2n) exhibits a ptB atom. Ab initio molecular dynamics simulations carried out at 298 K for 2000 fs suggest that all isomers are kinetically stable, except the cation 3c. Simulations carried out at low temperatures (100 and 200 K) for 2000 fs predict that even 3c is kinetically stable, which contains a ppB atom. Various bonding analyses (NBO, AdNDP, AIM, etc.) are carried out for these six different geometries of BAl4Mg−/0/+ to understand the bonding patterns. Based on these results, we conclude that ptB/ppB scenarios are prevalent in these systems. Compared to the carbon counter-part, CAl4Mg−, here the anion (BAl4Mg−) obeys the 18 valence electron rule, as B has one electron fewer than C. However, the neutral and cation species break the rule with 17 and 16 valence electrons, respectively. The electron affinity (EA) of BAl4Mg is slightly higher (2.15 eV) than the electron affinity of CAl4Mg (2.05 eV). Based on the EA value, it is believed that these molecules can be identified in the gas phase. All the ptB/ppB isomers exhibit π/σ double aromaticity. Energy decomposition analysis predicts that the interaction between BAl4−/0/+ and Mg is ionic in all these six systems.
Collapse
|