1
|
Zhao Y, Wang Z, Xu M, Qian F, Wei G, Liu D. The Glutamine Synthetases Are Required for Sensory Hair Cell Formation and Auditory Function in Zebrafish. Int J Mol Sci 2024; 25:11561. [PMID: 39519113 PMCID: PMC11546858 DOI: 10.3390/ijms252111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The development of sensory hair cells (HCs) is closely linked to hearing loss. There are still many unidentified genes that may play a crucial role in HC development and function. Glutamine synthetase, Glul, is expressed in sensory hair cells and auditory organs. However, the role of the Glul gene family in the auditory system remains largely unexplored. This study aims to investigate the function of the Glul gene family in the auditory system. The expression patterns of the glul gene family were examined via in situ hybridization in zebrafish embryos. It was revealed that the expression of glula occurred in the otic vesicle, while glulb was expressed in the neuromast. In contrast, glulc did not exhibit any discernible signal. glula loss of function caused abnormal otolith formation and reduced hair cell number in otic vesicles, while glulb knockdown caused a decrease in HC number in both neuromasts and otic vesicles and impaired auditory function. Furthermore, we found that the knockdown of glulb induces apoptosis of hair cells. Transcriptomic analysis of zebrafish with glula and glulb knockdown revealed significant alterations in the expression of many genes associated with auditory organs. The current study sheds light on the requirement of glula and glulb in zebrafish hair cell formation and auditory function.
Collapse
Affiliation(s)
| | | | | | | | - Guanyun Wei
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Qixiu Road 19, Nantong 226001, China; (Y.Z.); (Z.W.); (M.X.); (F.Q.)
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Qixiu Road 19, Nantong 226001, China; (Y.Z.); (Z.W.); (M.X.); (F.Q.)
| |
Collapse
|
2
|
Cozza A, Di Pasquale Fiasca VM, Martini A. Congenital Deafness and Deaf-Mutism: A Historical Perspective. CHILDREN (BASEL, SWITZERLAND) 2023; 11:51. [PMID: 38255364 PMCID: PMC10814868 DOI: 10.3390/children11010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Hearing loss is the most common sensory deficit and one of the most common congenital abnormalities. The estimated prevalence of moderate and severe hearing loss in a normal newborn is 0.1-0.3%, while the prevalence is 2-4% in newborns admitted to the newborn intensive care unit. Therefore, early detection and prompt treatment are of utmost importance in preventing the unwanted sequel of hearing loss on normal language development. The problem of congenital deafness is today addressed on the one hand with hearing screening at birth, on the other with the early (at around 3 months of age) application of hearing aids or, in case of lack of benefit, by the cochlear implant. Molecular genetics, antibody tests for some viruses, and diagnostic imaging have largely contributed to an effective etiological classification. A correct diagnosis and timely fitting of hearing aids or cochlear implants is useful for deaf children. The association between congenital deafness and "mutism", with all the consequences on/the consideration that deaf mutes have had since ancient times, not only from a social point of view but also from a legislative point of view, continued until the end of the nineteenth century, with the development on one side of new methods for the rehabilitation of language and on the other of sign language. But we need to get to the last decades of the last century to have, on the one hand, the diffusion of "universal newborn hearing screening", the discovery of the genetic causes of over half of congenital deafness, and on the other hand the cochlear implants that have allowed thousands of children born deaf the development of normal speech. Below, we will analyze the evolution of the problem between deafness and deaf-mutism over the centuries, with particular attention to the nineteenth century.
Collapse
Affiliation(s)
- Andrea Cozza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | | | - Alessandro Martini
- Padova University Research Center “International Auditory Processing Project in Venice (I-APPROVE)”, Department of Neurosciences, University of Padua, 35128 Padua, Italy;
| |
Collapse
|
3
|
Tisato V, Castiglione A, Ciorba A, Aimoni C, Silva JA, Gallo I, D'Aversa E, Salvatori F, Bianchini C, Pelucchi S, Secchiero P, Zauli G, Singh AV, Gemmati D. LINE-1 global DNA methylation, iron homeostasis genes, sex and age in sudden sensorineural hearing loss (SSNHL). Hum Genomics 2023; 17:112. [PMID: 38098073 PMCID: PMC10722762 DOI: 10.1186/s40246-023-00562-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Sudden sensorineural hearing loss (SSNHL) is an abrupt loss of hearing, still idiopathic in most of cases. Several mechanisms have been proposed including genetic and epigenetic interrelationships also considering iron homeostasis genes, ferroptosis and cellular stressors such as iron excess and dysfunctional mitochondrial superoxide dismutase activity. RESULTS We investigated 206 SSNHL patients and 420 healthy controls for the following genetic variants in the iron pathway: SLC40A1 - 8CG (ferroportin; FPN1), HAMP - 582AG (hepcidin; HEPC), HFE C282Y and H63D (homeostatic iron regulator), TF P570S (transferrin) and SOD2 A16V in the mitochondrial superoxide dismutase-2 gene. Among patients, SLC40A1 - 8GG homozygotes were overrepresented (8.25% vs 2.62%; P = 0.0015) as well SOD2 16VV genotype (32.0% vs 24.3%; P = 0.037) accounting for increased SSNHL risk (OR = 3.34; 1.54-7.29 and OR = 1.47; 1.02-2.12, respectively). Moreover, LINE-1 methylation was inversely related (r2 = 0.042; P = 0.001) with hearing loss score assessed as pure tone average (PTA, dB HL), and the trend was maintained after SLC40A1 - 8CG and HAMP - 582AG genotype stratification (ΔSLC40A1 = + 8.99 dB HL and ΔHAMP = - 6.07 dB HL). In multivariate investigations, principal component analysis (PCA) yielded PC1 (PTA, age, LINE-1, HAMP, SLC40A1) and PC2 (sex, HFEC282Y, SOD2, HAMP) among the five generated PCs, and logistic regression analysis ascribed to PC1 an inverse association with moderate/severe/profound HL (OR = 0.60; 0.42-0.86; P = 0.0006) and with severe/profound HL (OR = 0.52; 0.35-0.76; P = 0.001). CONCLUSION Recognizing genetic and epigenetic biomarkers and their mutual interactions in SSNHL is of great value and can help pharmacy science to design by pharmacogenomic data classical or advanced molecules, such as epidrugs, to target new pathways for a better prognosis and treatment of SSNHL.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121, Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Andrea Ciorba
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Claudia Aimoni
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Chiara Bianchini
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis and Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|