1
|
Biswal BK, Zhang B, Thi Minh Tran P, Zhang J, Balasubramanian R. Recycling of spent lithium-ion batteries for a sustainable future: recent advancements. Chem Soc Rev 2024; 53:5552-5592. [PMID: 38644694 DOI: 10.1039/d3cs00898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Lithium-ion batteries (LIBs) are widely used as power storage systems in electronic devices and electric vehicles (EVs). Recycling of spent LIBs is of utmost importance from various perspectives including recovery of valuable metals (mostly Co and Li) and mitigation of environmental pollution. Recycling methods such as direct recycling, pyrometallurgy, hydrometallurgy, bio-hydrometallurgy (bioleaching) and electrometallurgy are generally used to resynthesise LIBs. These methods have their own benefits and drawbacks. This manuscript provides a critical review of recent advances in the recycling of spent LIBs, including the development of recycling processes, identification of the products obtained from recycling, and the effects of recycling methods on environmental burdens. Insights into chemical reactions, thermodynamics, kinetics, and the influence of operating parameters of each recycling technology are provided. The sustainability of recycling technologies (e.g., life cycle assessment and life cycle cost analysis) is critically evaluated. Finally, the existing challenges and future prospects are presented for further development of sustainable, highly efficient, and environmentally benign recycling of spent LIBs to contribute to the circular economy.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| | - Bei Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| | - Phuong Thi Minh Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
- The University of Danang - University of Science and Technology, 54 Nguyen Luong Bang Str., Danang City, Vietnam
| | - Jingjing Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
2
|
Ebner S, Spirk S, Stern T, Mair-Bauernfeind C. How Green are Redox Flow Batteries? CHEMSUSCHEM 2023; 16:e202201818. [PMID: 36722298 DOI: 10.1002/cssc.202201818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Providing sustainable energy storage is a challenge that must be overcome to replace fossil-based fuels. Redox flow batteries are a promising storage option that can compensate for fluctuations in energy generation from renewable energy production, as their main asset is their design flexibility in terms of storage capacity. Current commercial options for flow batteries are mostly limited to inorganic materials such as vanadium, zinc, and bromine. As environmental aspects are one of the main drivers for developing flow batteries, assessing their environmental performance is crucial. However, this topic is still underexplored, as researchers have mostly focused on single systems with defined use cases and system boundaries, making the assessments of the overall technology inaccurate. This review was conducted to summarize the main findings of life cycle assessment studies on flow batteries with respect to environmental hotspots and their performance as compared to that of other battery systems.
Collapse
Affiliation(s)
- Sophie Ebner
- Institute of Environmental System Science, University of Graz, Merangasse 18, 8010, Graz, Austria
| | - Stefan Spirk
- Institute for Biobased Products and Paper Technology, Technical University of Graz, Inffeldgasse 23, 8010, Graz, Austria
| | - Tobias Stern
- Institute of Environmental System Science, University of Graz, Merangasse 18, 8010, Graz, Austria
| | - Claudia Mair-Bauernfeind
- Institute of Environmental System Science, University of Graz, Merangasse 18, 8010, Graz, Austria
- Wood K Plus-Competence Center for Wood Composites and Wood Chemistry, Kompetenzzentrum Holz GmbH Altenberger Straße 69, 4040, Linz, Austria
| |
Collapse
|
3
|
Du S, Gao F, Nie Z, Liu Y, Sun B, Gong X. Comparison of Electric Vehicle Lithium-Ion Battery Recycling Allocation Methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17977-17987. [PMID: 36455148 DOI: 10.1021/acs.est.2c05755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Power lithium-ion batteries (LIBs) are an important component of carbon neutrality in the transportation sector. The rapid growth of the LIB recycling industry is driven by various factors, such as resource scarcity. As a process interacting upstream and downstream, LIB recycling must consider the impact of the application of modeling approaches on the allocation of environmental benefits and burdens, especially at a time when carbon emissions are highly correlated with profit. In this study, seven allocation methods were chosen and applied to the production and multiple recycling process of typical LIB on the same data basis. The application of different allocation methods produced very disparate allocation results, and the conclusions of previous studies comparing the environmental performance of battery types need to be revisited. The life-cycle assessment (LCA) results should be interpreted with caution due to the impact of the allocation methods. Furthermore, a multi-indicator qualitative analysis based on product and process characteristics compares the applicability of the allocation methods to different aspects of LIB recycling. Relevant product standards for batteries should consider the characteristics of different methods and recommend a specific allocation method for the LCA community to employ in time to ensure that relevant studies are representative and comparable.
Collapse
Affiliation(s)
- Shiwei Du
- National Engineering Laboratory for Industrial Big-Data Application Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Feng Gao
- National Engineering Laboratory for Industrial Big-Data Application Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Zuoren Nie
- National Engineering Laboratory for Industrial Big-Data Application Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yu Liu
- National Engineering Laboratory for Industrial Big-Data Application Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Boxue Sun
- National Engineering Laboratory for Industrial Big-Data Application Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xianzheng Gong
- National Engineering Laboratory for Industrial Big-Data Application Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
The Role of Eco-Industrial Parks in Promoting Circular Economy in Russia: A Life Cycle Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14073893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As an approach to move towards a sustainable waste management system, circular economy (CE) is gaining an increased interest by most countries. Russia is among the countries where the CE is one of the priorities of the country’s economy, with a market value of the CE is USD$ 755.05 billion. However, such a strategy is facing challenges and barriers which are country specific. This study aimed to review the status of the CE in Russia and to identify the obstacles that are hindering the country from achieving its objectives. Moreover, the study aimed to evaluate the role of eco-industrial parks (EIP) in Russia in promoting the CE model. The study findings indicate that the CE adoption in Russia is still in its early stages. To create an enabling environment for CE promotion in Russia, there is a need to overcome several institutional, technical, and social barriers. Russian higher educational institutions are playing a major role to create the critical mass of experts that will help the country transition towards a CE model. Using life cycle assessment (LCA) to analyze the environmental performance of one of the EIPs in Russia revealed that such enterprises are more sustainable than the business-as-usual scenarios, under which the generated solid waste is buried into landfill. The comparison shows that by diverting 1.813 million tons of mixed municipal solid waste that is generated in Moscow to EIP would lead to a reduction in environmental impacts. The total global warming potential of the EIP scenario is less, by 59%, than the direct landfilling scenario, while the eutrophication, acidification, smog, and ozone depletion are less, and fossil fuel depletion impacts under the second scenario are less, by 81%, 26%, 18%, and 81%, respectively. Furthermore, the health impacts including carcinogenic, non-carcinogenic, eco-toxicity were found to be 92%, 96%, and 96%, respectively, less than the baseline scenario.
Collapse
|
5
|
An Optimized Fuzzy Controlled Charging System for Lithium-Ion Batteries Using a Genetic Algorithm. ENERGIES 2022. [DOI: 10.3390/en15020481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fast charging is an attractive way of charging batteries; however, it may result in an undesired degradation of battery performance and lifetime because of the increase in battery temperature during fast charge. In this paper we propose a simple optimized fuzzy controller that is responsible for the regulation of the charging current of a battery charging system. The basis of the method is a simple dynamic equivalent circuit type model of the Li-ion battery that takes into account the temperature dependency of the model parameters, too. Since there is a tradeoff between the charging speed determined by the value of the charging current and the increase in temperature of the battery, the proposed fuzzy controller is applied for controlling the charging current as a function of the temperature. The controller is optimized using a genetic algorithm to ensure a jointly minimal charging time and battery temperature increase during the charging. The control method is adaptive in the sense that we use parameter estimation of an underlying dynamic battery model to adapt to the actual status of the battery after each charging. The performance and properties of the proposed optimized charging control system are evaluated using a simulation case study. The evaluation was performed in terms of the charge profiles, using the fitness values of the individuals, and in terms of the charge performance on the actual battery. The proposed method has been evaluated compared to the conventional contant current-constant voltage methods. We have found that the proposed GA-fuzzy controller gives a slightly better performance in charging time while significantly decreasing the temperature increase.
Collapse
|
6
|
Santos DA, Dixit MK, Pradeep Kumar P, Banerjee S. Assessing the role of vanadium technologies in decarbonizing hard-to-abate sectors and enabling the energy transition. iScience 2021; 24:103277. [PMID: 34755097 PMCID: PMC8564109 DOI: 10.1016/j.isci.2021.103277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
The decarbonization of heavy industry and the emergence of renewable energy technologies are inextricably linked to access to mineral resources. As such, there is an urgent need to develop benchmarked assessments of the role of critical elements in reducing greenhouse gas emissions. Here, we explore the role of vanadium in decarbonizing construction by serving as a microalloying element and enabling the energy transition as the primary component of flow batteries used for grid-level storage. We estimate that vanadium has enabled an avoided environmental burden totaling 185 million metric tons of CO2 on an annual basis. A granular analysis estimates savings for China and the European Union at 1.15% and 0.18% of their respective emissions, respectively. Our results highlight the role of critical metals in developing low-carbon infrastructure while underscoring the need for holistic assessments to inform policy interventions that mitigate supply chain risks. Enabling the energy transition and deep decarbonization hinges on strategic minerals The versatility of vanadium chemistries enables technologies that lower CO2 emissions In structural applications, vanadium enables a greater economy of materials use Vanadium redox flow batteries balance the intermittency of wind and solar power
Collapse
Affiliation(s)
- David A Santos
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Manish K Dixit
- Department of Construction Science, Texas A&M University, College Station, TX 77843-3255, USA
| | - Pranav Pradeep Kumar
- Department of Construction Science, Texas A&M University, College Station, TX 77843-3255, USA.,Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3255, USA
| |
Collapse
|
7
|
Kikuchi Y, Suwa I, Heiho A, Dou Y, Lim S, Namihira T, Mochidzuki K, Koita T, Tokoro C. Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 132:86-95. [PMID: 34325331 DOI: 10.1016/j.wasman.2021.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
This series of papers addresses the recycling of cathode particles and aluminum (Al) foil from positive electrode sheet (PE sheet) dismantled from spent lithium-ion batteries (LIBs) by applying a high-voltage pulsed discharge. As concluded in Part I of the series (Tokoro et al., 2021), cathode particles and Al foil were separated in water based on a single pulsed power application. This separation of LIB components by pulsed discharge was examined by means of prospective life cycle assessment and is expected to have applications in LIB reuse and recycling. The indicators selected were life cycle greenhouse gas (LC-GHG) emissions and life cycle resource consumption potential (LC-RCP). We first completed supplementary experiments to collect redundant data under several scale-up circumstances, and then attempted to quantify the uncertainties from scaling up and progress made in battery technology. When the batch scale of pulsed discharge separation is sufficiently large, the recovery of cathode particles and Al foil from PE sheet by pulsed discharge can reduce both LC-GHG and LC-RCP, in contrast to conventional recycling with roasting processes. Due to technology developments in LIB cathodes, the reuse of positive electrode active materials (PEAM) does not always have lower environmental impacts than the recycling of the raw materials of PEAM in the manufacturing of new LIB cathodes. This study achieved a proof of concept for resource consumption reduction induced by cathode utilization, considering LC-GHG and LC-RCP, by applying high-voltage pulsed discharge separation.
Collapse
Affiliation(s)
- Yasunori Kikuchi
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8654, Japan; Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Presidential Endowed Chair for "Platinum Society", Organization for Interdisciplinary Research Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Izuru Suwa
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya Heiho
- Presidential Endowed Chair for "Platinum Society", Organization for Interdisciplinary Research Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yi Dou
- Presidential Endowed Chair for "Platinum Society", Organization for Interdisciplinary Research Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Soowon Lim
- Department of Resources and Environmental Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takao Namihira
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kazuhiro Mochidzuki
- Department of Resources and Environmental Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan; Retoca Laboratory LLC, 3-9-1 Maebarahigashi, Funabashi, Chiba 274-0824, Japan
| | - Taketoshi Koita
- Department of Resources and Environmental Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chiharu Tokoro
- Department of Resources and Environmental Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan; Department of Systems Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Abstract
The reduction of greenhouse gas emissions by the energy transition may lead to trade-offs with other impacts on the environment, society, and economy. One challenge is resource use impacts due to increasing demand for high-tech metals and minerals. A review of the current state of the art resource assessment of energy systems was conducted to identify gaps in research and application. Publications covering complete energy systems and supplying a detailed resource assessment were the focus of the evaluation. Overall, 92 publications were identified and categorized by the type of system covered and the applied abiotic resource assessment methods. A total of 78 out of 92 publications covered sub-systems of renewable energy systems, and nine considered complete energy systems and conducted a detailed resource use assessment. Most of the publications in the group “complete energy system and detailed resource assessment” were found in grey literature. Several different aspects were covered to assess resource use. Thirty publications focused on similar aspects including criticality and supply risks, but technology-specific aspects are rarely assessed in the resource assessment of renewable energy systems. Few publications included sector coupling technologies, and among the publications most relevant to the aim of this paper one third did not conduct an indicator-driven assessment.
Collapse
|
9
|
Life Cycle Assessment of an NMC Battery for Application to Electric Light-Duty Commercial Vehicles and Comparison with a Sodium-Nickel-Chloride Battery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031160] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper presents the results of an environmental assessment of a Nickel-Manganese-Cobalt (NMC) Lithium-ion traction battery for Battery Electric Light-Duty Commercial Vehicles (BEV-LDCV) used for urban and regional freight haulage. A cradle-to-grave Life Cycle Inventory (LCI) of NMC111 is provided, operation and end-of-life stages are included, and insight is also given into a Life Cycle Assessment of different NMC chemistries. The environmental impacts of the manufacturing stages of the NMC111 battery are then compared with those of a Sodium-Nickel-Chloride (ZEBRA) battery. In the second part of the work, two electric-battery LDCVs (powered with NMC111 and ZEBRA batteries, respectively) and a diesel urban LDCV are analysed, considering a wide set of environmental impact categories. The results show that the NMC111 battery has the highest impacts from production in most of the impact categories. Active cathode material, Aluminium, Copper, and energy use for battery production are the main contributors to the environmental impact. However, when vehicle application is investigated, NMC111-BEV shows lower environmental impacts, in all the impact categories, than ZEBRA-BEV. This is mainly due to the greater efficiency of the NMC111 battery during vehicle operation. Finally, when comparing BEVs to a diesel LDCV, the electric powertrains show advantages over the diesel one as far as global warming, abiotic depletion potential-fossil fuels, photochemical oxidation, and ozone layer depletion are concerned. However, the diesel LDCV performs better in almost all the other investigated impact categories.
Collapse
|
10
|
Wang S, Yu J. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:156-164. [PMID: 33100173 DOI: 10.1177/0734242x20966637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
China has become the largest electric vehicle (EV) market in the world since 2015. Consequently, the lithium-ion battery (LiB) market in China is also expanding fast. LiB makers are continually introducing new types of LiBs into the market to improve LiBs' performance. However, there will be a considerable amount of waste LiBs generated in China. These waste LiBs should be appropriately recycled to avoid resources' waste or environmental pollution problems. Yet, because LiBs' type keeps changing, the environmental impact and profitability of the waste LiB recycling industry in China become uncertain. In this research, we reveal the detailed life cycle process of EVs' LiBs in China first. Then, the environmental impact of each type of LiB is speculated using the life cycle assessment (LCA) method. Moreover, we clarify how LiBs' evolution will affect the economic effect of the waste battery recycling industry in China. We perform a sensitivity analysis focusing on waste LiBs' collection rate. We found that along with LiBs' evolution, their environmental impact is decreasing. Furthermore, if waste LiBs could be appropriately recycled, their life cycle environmental impact would be further dramatically decreased. On the other hand, the profitability of the waste battery recycling industry in China would decrease in the future. Moreover, it is essential to improve waste LiBs' collection rate to establish an efficient waste LiB industry. Such a trend should be noticed by the Chinese government and waste LiB recycling operators to establish a sustainable waste LiB recycling industry in the future.
Collapse
Affiliation(s)
- Shuoyao Wang
- Graduate School of International Cultural Studies, Tohoku University, Sendai, Japan
| | - Jeongsoo Yu
- Graduate School of International Cultural Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Wang S, Yu J, Okubo K. Estimation of End-of-Life Hybrid Vehicle number in Japan considering secondhand vehicle exportation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 104:198-206. [PMID: 31981821 DOI: 10.1016/j.wasman.2020.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Hybrid Vehicle (HV) is becoming more and more popular around the world in recent years. Japan is the biggest HV market presently, the sales of HV is actually increasing faster than the government has predicted. Meanwhile, a huge amount of End-of-Life HV will emerge in the future, and since HV consumes more rare metal (cobalt and nickel, etc.,) and non-ferrous metal (aluminum and copper, etc.,) during the manufacturing process comparing to ordinary vehicles, the proper treatment and sufficient resource recycling process is indispensable. However, although Japan government installed End-of-Life HV recycling system, recyclable End-of-Life HV in Japan cannot be grasped due to the massive exportation of secondhand HV to developing countries. Moreover, despite secondhand HV, components from End-of-Life HV such as Nickel-Metal Hydride batteries and electric motors will also be exported to developing countries as used parts. Since resource potential of these components is high and will cause pollution problem in exportation destination without proper recycling treatment, their flow should also be studied. This research aims at estimating recyclable End-of-Life HV number using actual vehicle deregistration rate in Japan while considering secondhand HV exportation trend. Moreover, the flow of previously mentioned components was also studied. Scenario analysis on the secondhand HV exportation and components' flow was further performed, and the effect of secondhand HV and components' exportation was discussed. The result shows that, only 0.11 million waste HV will be recycled in Japan in 2030 under the basic scenario and will not surpass 1 million in all 3 additional scenarios.
Collapse
Affiliation(s)
- Shuoyao Wang
- Tohoku University, Graduate School of International Cultural Studies, Sendai 980-8576, Japan.
| | - Jeongsoo Yu
- Tohoku University, Graduate School of International Cultural Studies, Sendai 980-8576, Japan
| | - Kazuaki Okubo
- Tohoku University, Graduate School of International Cultural Studies, Sendai 980-8576, Japan
| |
Collapse
|
12
|
Life Cycle Assessment of Electricity Generation from an Array of Subsea Tidal Kite Prototypes. ENERGIES 2020. [DOI: 10.3390/en13020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tidal current technologies have the potential to provide highly predictable energy, since tides are driven by lunar cycles. However, before implementing such technologies on a large scale, their environmental performance should be assessed. In this study, a prospective life cycle assessment (LCA) was performed on a 12 MW tidal energy converter array of Minesto Deep Green 500 (DG500) prototypes, closely following the Environmental Product Declaration (EPD) standards, but including scenarios to cover various design possibilities. The global warming potential (GWP) of the prototype array was in the range of 18.4–26.3 gCO2-eq/kWhe. This is comparable with other renewable energy systems, such as wind power. Material production processes have the largest impact, but are largely offset by recycling at the end of life. Operation and maintenance processes, including the production of replacement parts, also provide major contributions to environmental impacts. Comparisons with other technologies are limited by the lack of a standardized way of performing LCA on offshore power generation technologies.
Collapse
|