1
|
Scali M, Spinsanti G, Vignani R. Validation of a simplified small-scale DNA extraction protocol from wine by quantitative real-time PCR. 3 Biotech 2024; 14:145. [PMID: 38706928 PMCID: PMC11065827 DOI: 10.1007/s13205-024-03992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
In the present study, we compared a simplified small-scale purification protocol to obtain DNA admixtures out of wine, with our large-scale published method. The extraction methods must provide DNA free of PCR inhibitors, that can interfere with DNA amplification. To evaluate the efficiency of grapevine's nuclear DNA extraction from wine, the new protocol was also compared in terms of purity and yield to the DNA obtained out of grapevine's (Vitis vinifera) leaf tissue, using a commercial kit. Two single-copy nuclear genes, nine-cis-epoxy carotenoid dioxygenase 2 (NCED2), and prefoldin subunit 5-like (PS5) were amplified in DNA extracted from wine and grapevine by real-time TaqMan PCR to determine the presence of inhibitors in relation to the diversity of starting biological matrix. This study showed that the small-scale, simpler method for extracting DNA from wine produced effective results in terms of inhibitor presence and purity. Furthermore, even though the initial biological matrix was more complicated, the grapevine nuclear DNA that was removed from wine was qualitatively equivalent to the DNA that was isolated from the leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03992-x.
Collapse
Affiliation(s)
- Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Spinsanti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Rita Vignani
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Purwidyantri A, Azinheiro S, García Roldán A, Jaegerova T, Vilaça A, Machado R, Cerqueira MF, Borme J, Domingues T, Martins M, Alpuim P, Prado M. Integrated Approach from Sample-to-Answer for Grapevine Varietal Identification on a Portable Graphene Sensor Chip. ACS Sens 2023; 8:640-654. [PMID: 36657739 PMCID: PMC9973367 DOI: 10.1021/acssensors.2c02090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023]
Abstract
Identifying grape varieties in wine, related products, and raw materials is of great interest for enology and to ensure its authenticity. However, these matrices' complexity and low DNA content make this analysis particularly challenging. Integrating DNA analysis with 2D materials, such as graphene, offers an advantageous pathway toward ultrasensitive DNA detection. Here, we show that monolayer graphene provides an optimal test bed for nucleic acid detection with single-base resolution. Graphene's ultrathinness creates a large surface area with quantum confinement in the perpendicular direction that, upon functionalization, provides multiple sites for DNA immobilization and efficient detection. Its highly conjugated electronic structure, high carrier mobility, zero-energy band gap with the associated gating effect, and chemical inertness explain graphene's superior performance. For the first time, we present a DNA-based analytic tool for grapevine varietal discrimination using an integrated portable biosensor based on a monolayer graphene field-effect transistor array. The system comprises a wafer-scale fabricated graphene chip operated under liquid gating and connected to a miniaturized electronic readout. The platform can distinguish closely related grapevine varieties, thanks to specific DNA probes immobilized on the sensor, demonstrating high specificity even for discriminating single-nucleotide polymorphisms, which is hard to achieve with a classical end-point polymerase chain reaction or quantitative polymerase chain reaction. The sensor was operated in ultralow DNA concentrations, with a dynamic range of 1 aM to 0.1 nM and an attomolar detection limit of ∼0.19 aM. The reported biosensor provides a promising way toward developing decentralized analytical tools for tracking wine authenticity at different points of the food value chain, enabling data transmission and contributing to the digitalization of the agro-food industry.
Collapse
Affiliation(s)
- Agnes Purwidyantri
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Sarah Azinheiro
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
- Department
of Analytical Chemistry, Nutrition and Food Science, School of Veterinary
Sciences, University of Santiago de Compostela, Campus of Lugo, Lugo27002, Spain
| | - Aitor García Roldán
- Department
of Analytical Chemistry, Nutrition and Food Science, School of Veterinary
Sciences, University of Santiago de Compostela, Campus of Lugo, Lugo27002, Spain
| | - Tereza Jaegerova
- Department
of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague 6, Prague166 28, Czech Republic
| | - Adriana Vilaça
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Rofer Machado
- Centre
of Chemistry, University of Minho, Campus de Gualtar, Braga4710-057, Portugal
| | - M. Fátima Cerqueira
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
- Center
of Physics of the Universities of Minho and Porto, University of Minho, Braga4710-057, Portugal
| | - Jérôme Borme
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Telma Domingues
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
- Center
of Physics of the Universities of Minho and Porto, University of Minho, Braga4710-057, Portugal
| | - Marco Martins
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| | - Pedro Alpuim
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
- Center
of Physics of the Universities of Minho and Porto, University of Minho, Braga4710-057, Portugal
| | - Marta Prado
- International
Iberian Nanotechnology Laboratory, Braga4715-330, Portugal
| |
Collapse
|
3
|
Stój A, Czernecki T, Domagała D. Authentication of Polish Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on Volatile Compounds Analysis in Combination with Machine Learning Algorithms: Hotrienol as a Marker of the Zweigelt Variety. Molecules 2023; 28:1961. [PMID: 36838950 PMCID: PMC9967794 DOI: 10.3390/molecules28041961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The aim of this study was to determine volatile compounds in red wines of Zweigelt and Rondo varieties using HS-SPME/GC-MS and to find a marker and/or a classification model for the assessment of varietal authenticity. The wines were produced by using five commercial yeast strains and two types of malolactic fermentation. Sixty-seven volatile compounds were tentatively identified in the test wines; they represented several classes: 9 acids, 24 alcohols, 2 aldehydes, 19 esters, 2 furan compounds, 2 ketones, 1 sulfur compound and 8 terpenes. 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) was found to be a variety marker for Zweigelt wines, since it was detected in all the Zweigelt wines, but was not present in the Rondo wines at all. The relative concentrations of volatiles were used as an input data set, divided into two subsets (training and testing), to the support vector machine (SVM) and k-nearest neighbor (kNN) algorithms. Both machine learning methods yielded models with the highest possible classification accuracy (100%) when the relative concentrations of all the test compounds or alcohols alone were used as input data. An evaluation of the importance value of subsets consisting of six volatile compounds with the highest potential to distinguish between the Zweigelt and Rondo varieties revealed that SVM and kNN yielded the best classification models (F-score of 1, accuracy of 100%) when 3-ethyl-4-methylpentan-1-ol or 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) or subsets containing one or both of them were used. Moreover, the best SVM model (F-score of 1) was built with a subset containing 2-phenylethyl acetate and 3-(methylsulfanyl)propan-1-ol.
Collapse
Affiliation(s)
- Anna Stój
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences, 8 Skromna Street, 20-704 Lublin, Poland
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences, 8 Skromna Street, 20-704 Lublin, Poland
| | - Dorota Domagała
- Department of Applied Mathematics and Computer Science, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland
| |
Collapse
|
4
|
Zambianchi S, Soffritti G, Stagnati L, Patrone V, Morelli L, Busconi M. Effect of storage time on wine DNA assessed by SSR analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Azevedo-Nogueira F, Rego C, Gonçalves HMR, Fortes AM, Gramaje D, Martins-Lopes P. The road to molecular identification and detection of fungal grapevine trunk diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:960289. [PMID: 36092443 PMCID: PMC9459133 DOI: 10.3389/fpls.2022.960289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Grapevine is regarded as a highly profitable culture, being well spread worldwide and mostly directed to the wine-producing industry. Practices to maintain the vineyard in healthy conditions are tenuous and are exacerbated due to abiotic and biotic stresses, where fungal grapevine trunk diseases (GTDs) play a major role. The abolishment of chemical treatments and the intensification of several management practices led to an uprise in GTD outbreaks. Symptomatology of GTDs is very similar among diseases, leading to underdevelopment of the vines and death in extreme scenarios. Disease progression is widely affected by biotic and abiotic factors, and the prevalence of the pathogens varies with country and region. In this review, the state-of-the-art regarding identification and detection of GTDs is vastly analyzed. Methods and protocols used for the identification of GTDs, which are currently rather limited, are highlighted. The main conclusion is the utter need for the development of new technologies to easily and precisely detect the presence of the pathogens related to GTDs, allowing to readily take phytosanitary measures and/or proceed to plant removal in order to establish better vineyard management practices. Moreover, new practices and methods of detection, identification, and quantification of infectious material would allow imposing greater control on nurseries and plant exportation, limiting the movement of infected vines and thus avoiding the propagation of fungal inoculum throughout wine regions.
Collapse
Affiliation(s)
- Filipe Azevedo-Nogueira
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília Rego
- LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Margarida Fortes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - David Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, Logroño, Spain
| | - Paula Martins-Lopes
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Lindley J. Food regulation and policing: innovative technology to close the regulatory gap in Australia. J Verbrauch Lebensm 2022; 17:127-136. [PMID: 35282596 PMCID: PMC8898030 DOI: 10.1007/s00003-022-01372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022]
Abstract
Internationally, food regulations are centred on human health and safety to prevent health crises. In Australia, regulatory control over the health and safety of humans is sound, however from a criminological perspective, control over fraudulent activities within food supply chains lack. Food fraud knows no geographical boundaries and has endless reach, therefore should be prioritised by policymakers, regulators and law enforcement. Australia’s reputation for high-quality food is important domestically, but also for establishing and maintaining trust in international food trade relationships, therefore lack of enforcement over food could damage ‘Brand Australia’. Given the food industry’s vested interest in maintaining this reputation, it must also play a role to protect it. This research reviews regulatory landscape against food fraud in Australia and then, questions whether coupling informal controls to support existing formal regulatory controls may be the most appropriate and holistic way forward to protect the industry and consumers. It tests a regulatory pluralism framework to determine whether it can logically organize informal, innovative responses to contribute cohesively alongside formal controls at various points along the supply chain to prevent food fraud. Finally, it considers available informal, innovative technologies to: enhance testing regimes; prevent product and label tampering; and trace food supply chains adopted internationally show positive progress in responding to increasingly sophisticated and organized global food fraud. The research concludes adopting a regulatory pluralism framework, coupling existing regulatory controls and innovative technology could enhance and strengthen Australia’s regulatory response to fraud within its food industry.
Collapse
Affiliation(s)
- Jade Lindley
- The University of Western Australia, Crawley, WA Australia
| |
Collapse
|
7
|
Tabago MKAG, Calingacion MN, Garcia J. Recent advances in NMR-based metabolomics of alcoholic beverages. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100009. [PMID: 35415632 PMCID: PMC8991939 DOI: 10.1016/j.fochms.2020.100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 01/14/2023]
Abstract
Alcoholic beverages have a complex chemistry that can be influenced by their alcoholic content, origin, fermentation process, additives, and contaminants. The complex composition of these beverages leave them susceptible to fraud, potentially compromising their authenticity, quality, and market value, thus increasing risks to consumers' health. In recent years, intensive studies have been carried out on alcoholic beverages using different analytical techniques to evaluate the authenticity, variety, age, and fermentation processes that were used. Among these techniques, NMR-based metabolomics holds promise in profiling the chemistry of alcoholic beverages, especially in Asia where metabolomics studies on alcoholic beverages remain limited.
Collapse
Affiliation(s)
- Maria Krizel Anne G. Tabago
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Mariafe N. Calingacion
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Joel Garcia
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| |
Collapse
|
8
|
Moehring MJ, Harrington PDB. Analysis of Wine and Its Use in Tracing the Origin of Grape Cultivation. Crit Rev Anal Chem 2021; 52:1901-1912. [PMID: 34061694 DOI: 10.1080/10408347.2021.1925082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The concentrations of elemental and volatile components in wine and the effect of biological, meteorological, and anthropogenic factors on their levels are important for authentication and quality assurance. Sample preparation for atomic absorption and inductively coupled plasma spectrometries for elemental analysis as well as chromatographic and electronic nose (EN) analytical methods for volatile compounds are reviewed. The International Organization of Vine and Wine (OIV) and countries that produce and import wine developed methods and set limits on metal abundance to ensure that all metal concentrations are well below toxic threshold limits. With the use of data analysis tools, elemental analysis can enable wines to be traced back to their geographic region of origin. When paired with volatile and isotopic analysis the accuracy of this authentication greatly improves. Tracing studies are reviewed to demonstrate the capabilities of these analyses.
Collapse
Affiliation(s)
- Michael J Moehring
- Departmentof Chemistry & Biochemistry, Ohio University, Athens, Ohio, USA
| | | |
Collapse
|
9
|
Methodological Approaches to DNA Authentication of Foods, Wines and Raw Materials for Their Production. Foods 2021; 10:foods10030595. [PMID: 33799888 PMCID: PMC8002015 DOI: 10.3390/foods10030595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
DNA authentication of wines is a process of verifying their authenticity by genetic identification of the main plant component. The sample preparation of experimental and commercial wines was carried out by precipitation of wine debris by centrifugation with preliminary exposure with precipitators and co-precipitators, including developed macro- and micro-volume methods applicable to white or red wines, using polyvinylpyrrolidone as a co-precipitator. Addition of 2-mercaptoethanol and proteinase K to the lysing solution made it possible to adapt the technology for DNA extraction from the precipitated wine debris. The additionally tested technique of DNA extraction from wine debris by dimethyl sulfoxide (DMSO) lysis had fewer stages and, consequently, a lower risk of contamination. The results of further testing of one of the designed primer pairs (UFGT-F1 and UFGT-R1) in conjunction with the tested methods of wine material sample preparation and nucleic acid extraction, showed the advantage in the given set of oligonucleotides over previously used ones in terms of sensitivity, specificity and reproducibility. The developing strategy for genetic identification of grape varieties and DNA authentication of wines produced from them based on direct sequencing of polymerase chain reaction (PCR) products is implemented by interpreting the detected polymorphic positions of variable Vitis vinifera L. UFGT gene locus with distribution and split into 13 UFGT gene-associated groups.
Collapse
|
10
|
Duley G, Dujourdy L, Klein S, Werwein A, Spartz C, Gougeon RD, Taylor DK. Regionality in Australian Pinot noir wines: A study on the use of NMR and ICP-MS on commercial wines. Food Chem 2020; 340:127906. [PMID: 32890857 DOI: 10.1016/j.foodchem.2020.127906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023]
Abstract
Wine quality and character are defined in part by the terroir in which the grapes are grown. Metabolomic techniques, such as nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS), are used to characterise wines and to detect wine fraud in other countries but have not been extensively trialled in Australia. This paper describes the use of ICP-MS and NMR to characterise a selection of Pinot noir wines. Wines from varying terroirs could be somewhat distinguished by their mineral content using principal component analysis (PCA). PCA was able to separate wines by their Australian states more clearly than by region. Metabolomic analysis of the wines using NMR did not find any correlations with climate/daytime temperatures, or region. An analysis of coinertia suggested that the two datasets were not redundant, and it is proposed that ICP-MS data is the most useful for determining regionality.
Collapse
Affiliation(s)
- Gavin Duley
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Glen Osmond, South Australia 5064, Australia.
| | - Laurence Dujourdy
- Service d'Appui à la Recherche, AgroSup Dijon, F-21000 Dijon, France
| | - Susanne Klein
- Institut Heidger KG, Novianderweg 24, 54518 Osann-Monzel, Germany
| | - Anna Werwein
- Institut Heidger KG, Novianderweg 24, 54518 Osann-Monzel, Germany
| | - Christina Spartz
- Institut Heidger KG, Novianderweg 24, 54518 Osann-Monzel, Germany
| | - Régis D Gougeon
- Institut Universitaire de la Vigne et du Vin Jules Guyot, Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Dennis K Taylor
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
11
|
Electrochemical Sensors Coupled with Multivariate Statistical Analysis as Screening Tools for Wine Authentication Issues: A Review. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumers are increasingly interested in the characteristics of the products they consume, including aroma, taste, and appearance, and hence, scientific research was conducted in order to develop electronic senses devices that mimic the human senses. Thanks to the utilization of electroanalytical techniques that used various sensors modified with different electroactive materials coupled with pattern recognition methods, artificial senses such as electronic tongues (ETs) are widely applied in food analysis for quality and authenticity approaches. This paper summarizes the applications of electrochemical sensors (voltammetric, amperometric, and potentiometric) coupled with unsupervised and supervised pattern recognition methods (principal components analysis (PCA), linear discriminant analysis (LDA), partial least square (PLS) regression, artificial neural network (ANN)) for wine authenticity assessments including the discrimination of varietal and geographical origins, monitoring the ageing processes, vintage year discrimination, and detection of frauds and adulterations. Different wine electrochemical authentication methodologies covering the electrochemical techniques, electrodes types, functionalization sensitive materials and multivariate statistical analysis are emphasized and the main advantages and disadvantages of using the proposed methodologies for real applications were concluded.
Collapse
|
12
|
Stój A, Kapusta I, Domagała D. Classification of Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on the Analysis of Phenolic Compounds by UPLC-PDA-MS/MS. Molecules 2020; 25:molecules25061342. [PMID: 32188007 PMCID: PMC7145314 DOI: 10.3390/molecules25061342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The authentication of grape variety from which wine is produced is necessary for protecting a consumer from adulteration and false labelling. The aim of this study was to analyze phenolic compounds in red monovarietal wines produced from Zweigelt (Vitis vinifera) and Rondo (non-Vitis vinifera) varieties while using the UPLC-PDA-MS/MS method and to assess whether these wines can be classified according to grape variety that is based on chemometric analysis. Fifty-five phenolic compounds belonging to five classes—anthocyanins, flavonols, flavan-3-ols, phenolic acids, and stilbenes—were identified and quantified in Zweigelt and Rondo wines. The wines of the Zweigelt variety were characterized by lower concentrations of phenolic compounds than those of the Rondo variety. Furthermore, wines of the Zweigelt variety contained the highest concentrations of flavan-3-ols, and wines of the Rondo variety—the highest concentrations of anthocyanins. Hierarchical cluster analysis (HCA) revealed that Zweigelt wines and Rondo wines formed two separate groups. The Rondo group was divided into two subgroups, differing in type of malolactic fermentation (spontaneous or induced). Phenolic compounds analysis by means of UPLC-PDA-MS/MS combined with HCA is a useful tool for the classification of red wines that were produced from Zweigelt and Rondo grape varieties, regardless of yeast strain and type of malolactic fermentation.
Collapse
Affiliation(s)
- Anna Stój
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
- Correspondence: ; Tel.: +48-81-4623380
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, College of Natural Science, Rzeszów University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| | - Dorota Domagała
- Department of Applied Mathematics and Computer Science, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
13
|
Abstract
This Special Issue concerns wine traceability, a central theme in the current world market where consumers are increasingly demanding the quality and origin of food and drink [...]
Collapse
|