1
|
Lee D, Wu X, Lange I, Cao S, Kang KS. Dual Beneficial Effects of Methylnissolin-3-O-β-d-Glucopyranoside on Obesity-Induced Inflammatory Responses in Adipocyte-Macrophage Co-Culture. PLANTS 2022; 11:plants11131715. [PMID: 35807667 PMCID: PMC9269391 DOI: 10.3390/plants11131715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022]
Abstract
Methylnissolin-3-O-β-d-glucopyranoside (MNG) is a pterocarpan analog, which protects EA.hy926 cells against oxidative damage through the Nrf2/HO-1 pathway. However, the effects of MNG on obesity-induced inflammatory responses in adipocyte-macrophage co-culture remain unclear. A differentiated murine preadipocyte cell line (3T3-L1) was co-cultured with a murine macrophage cell line (RAW264.7). Intracellular lipid accumulation was determined using Oil Red O staining. Western blotting was performed to investigate the expression of adipogenesis- and inflammation-associated proteins. Cell culture supernatants were assayed using ELISA kits to measure the levels of proinflammatory cytokines such as interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). MNG inhibited lipid accumulation and the production of IL-6 and MCP-1 in the 3T3-L1 and RAW264.7 cell co-culture. Moreover, MNG inhibited the protein expression of CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, peroxisome proliferator-activated receptor γ (PPARγ), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS) under the same co-culture conditions. MNG also inhibited IL-6 and MCP-1 production compared with the co-culture control. These findings demonstrate that MNG inhibited lipid accumulation and inflammatory response by downregulating IL-6 and MCP-1 production and protein expression of C/EBPβ, C/EBPα, PPARγ, COX-2, and iNOS in co-culture conditions with 3T3-L1 and RAW264.7 cells. These results suggest that MNG may be beneficial in preventing obesity-related inflammatory status.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (I.L.)
| | - Ingo Lange
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (I.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (I.L.)
- Correspondence: (S.C.); (K.S.K.); Tel.: +1-808-981-8010 (S.C.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (S.C.); (K.S.K.); Tel.: +1-808-981-8010 (S.C.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
3
|
Qian D, Zhou H, Fan P, Yu T, Patel A, O’Brien M, Wang Z, Lu S, Tong G, Shan Y, Wang L, Gao Y, Xiong Y, Zhang L, Wang X, Liu Y, Zhou S. A Traditional Chinese Medicine Plant Extract Prevents Alcohol-Induced Osteopenia. Front Pharmacol 2021; 12:754088. [PMID: 35002697 PMCID: PMC8730326 DOI: 10.3389/fphar.2021.754088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced in the treatment of bone diseases and alcoholism. Chronic excessive alcohol use results in alcohol-induced bone diseases, including osteopenia and osteoporosis, which increases fracture risk, deficient bone repair, and osteonecrosis. This preclinical study investigated the therapeutic effects of TCM herbal extracts in animal models of chronic excessive alcohol consumption-induced osteopenia. TCM herbal extracts (Jing extracts) were prepared from nine Chinese herbal medicines, a combinative herbal formula for antifatigue and immune regulation, including Astragalus, Cistanche deserticola, Dioscorea polystachya, Lycium barbarum, Epimedium, Cinnamomum cassia, Syzygium aromaticum, Angelica sinensis, and Curculigo orchioides. In this study, Balb/c male mice were orally administrated alcohol (3.2 g/kg/day) with/without TCM herbal extracts (0.125 g/kg, 0.25 g/kg, or 0.5 g/kg) by gavage. Our results showed that after 50 days of oral administration, TCM herbal extracts prevented alcohol-induced osteopenia demonstrated by μ-CT bone morphological analysis in young adults and middle-aged/old Balb/c male mice. Biochemical analysis demonstrated that chronic alcohol consumption inhibits bone formation and has a neutral impact on bone resorption, suggesting that TCM herbal extracts (Jing extracts) mitigate the alcohol-induced abnormal bone metabolism in middle-aged/old male mice. Protocatechuic acid, a natural phenolic acid in Jing extracts, mitigates in vivo alcohol-induced decline of alkaline phosphatase (ALP) gene expression in the bone marrow of Balb/c male mice and in vitro ALP activity in pre-osteoblast MC3T3-E1 cells. Our study suggests that TCM herbal extracts prevent chronic excessive alcohol consumption-induced osteopenia in male mice, implying that traditional medicinal plants have the therapeutic potential of preventing alcohol-induced bone diseases.
Collapse
Affiliation(s)
- Dongyang Qian
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopedics, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhou
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Pan Fan
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Spine Center, Zhongda Hospital, Southeast University Medical School, Nanjing, China
| | - Tao Yu
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopedic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anish Patel
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Morgan O’Brien
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Zhe Wang
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Shiguang Lu
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Guoqiang Tong
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yimin Shan
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Lei Wang
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, China
| | - Yuan Xiong
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lily Zhang
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuancai Liu
- Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
- *Correspondence: Shuanhu Zhou, , ; Yuancai Liu,
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
- *Correspondence: Shuanhu Zhou, , ; Yuancai Liu,
| |
Collapse
|
4
|
Wu X, Xu J, Cai Y, Yang Y, Liu Y, Cao S. Cytoprotection against Oxidative Stress by Methylnissolin-3- O-β-d-glucopyranoside from Astragalus membranaceus Mainly via the Activation of the Nrf2/HO-1 Pathway. Molecules 2021; 26:molecules26133852. [PMID: 34202670 PMCID: PMC8270303 DOI: 10.3390/molecules26133852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Astragalus membranaceus is a famous herb found among medicinal and food plants in East and Southeastern Asia. The Nrf2-ARE assay-guided separation of an extract from Jing liqueur led to the identification of a nontoxic Nrf2 activator, methylnissolin-3-O-β-d-glucopyranoside (MNG, a component of A. membranaceus). Nrf2 activation by MNG has not been reported before. Using Western Blot, RT-qPCR and imaging, we investigated the cytoprotective effect of MNG against hydrogen peroxide-induced oxidative stress. MNG induced the expression of Nrf2, HO-1 and NQO1, accelerated the translocation of Nrf2 into nuclei, and enhanced the phosphorylation of AKT. The MNG-induced expression of Nrf2, HO-1, and NQO1 were abolished by Nrf2 siRNA, while the MNG-induced expression of Nrf2 and HO-1 was abated and the AKT phosphorylation was blocked by LY294002 (a PI3K inhibitor). MNG reduced intracellular ROS generation. However, the protection of MNG against the H2O2 insult was reversed by Nrf2 siRNA with decreased cell viability. The enhancement of Nrf2 and HO-1 by MNG upon H2O2 injury was reduced by LY294002. These data showed that MNG protected EA.hy926 cells against oxidative damage through the Nrf2/HO-1 and at least partially the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
| | - Jian Xu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
| | - Yousheng Cai
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Yuejun Yang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
| | - Yuancai Liu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
- Correspondence: (Y.L.); (S.C.); Tel.: +86-71-4876-8056 (Y.L.); +1-808-981-8010 (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
- Correspondence: (Y.L.); (S.C.); Tel.: +86-71-4876-8056 (Y.L.); +1-808-981-8010 (S.C.)
| |
Collapse
|
5
|
Caradonna F, Cruciata I, Luparello C. Nutrigenetics, nutrigenomics and phenotypic outcomes of dietary low-dose alcohol consumption in the suppression and induction of cancer development: evidence from in vitro studies. Crit Rev Food Sci Nutr 2020; 62:2122-2139. [PMID: 33287559 DOI: 10.1080/10408398.2020.1850416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is known that the intake of alcoholic beverages may impair genetic and epigenetic regulatory events with consequent crucial effects on cell phenotypes and that its association with selected genotypes can lead to a different risk of cancer in the population. The aim of this review is to pick up selected studies on this topic and recapitulate some of the biochemical and nutrigenetic/nutrigenomic aspects involved in the impact of dietary low-dose alcohol consumption on the switching-on or -off of tumorigenic pathways. These include i) the existence of predisposing or protective human genotypes and the relationship between dietary compounds and alcohol in the promotion or inhibition of carcinogenesis; ii) the effects of other components of alcoholic drinks in the modulation of the expression of oncogenes and oncosuppressors, the autophagic flux and the onset of apoptosis, with examples of their cytospecificity; and iii) the role of alcoholic beverage consumption within particular dietary regimens, including the Mediterranean diet. Taking all the data into account, several alcohol-associated bioactive dietary compounds appear capable to modulate peculiar intracellular pathways predisposing to or protecting from cancer. Advances in the nutrigenetic, nutrigenomic and nutriepigenetic knowledge complementing the biochemical and molecular approaches will help in unveiling their impact on health outcome.
Collapse
Affiliation(s)
- Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Abstract
Juices, wine, coffee, and cocoa are rich sources of natural polyphenolic compounds that have potent antioxidant activities proven by in vitro and in vivo studies. These polyphenolic compounds quench reactive oxygen and nitrogen species (RONS) or reactive free radicals and act as natural antioxidants which are also able to protect against reactive oxygen species (ROS)-mediated oxidative damage, which elevates cellular antioxidant capacity to induce antioxidant defense mechanisms by modulating transcription factors. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor encoded in humans. It is activated as a result of oxidative stress and induces the expression of its target genes. This is one of the most important cellular defense mechanisms against oxidative stress. However, the oxidative stress alone is not enough to activate Nrf2. Hence phytochemicals, especially polyphenolics, act as natural Nrf2 activators. Herein, this review discusses the natural products identified in juices, coffee, cocoa and wines that modulate Nrf2 activity in cellular systems.
Collapse
|
7
|
Lee D, Yu JS, Huang P, Qader M, Manavalan A, Wu X, Kim JC, Pang C, Cao S, Kang KS, Kim KH. Identification of Anti-Inflammatory Compounds from Hawaiian Noni ( Morinda citrifolia L.) Fruit Juice. Molecules 2020; 25:E4968. [PMID: 33121016 PMCID: PMC7662328 DOI: 10.3390/molecules25214968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Noni (Morinda citrifolia L.) fruit juice has been used in Polynesia as a traditional folk medicine and is very popular worldwide as a functional food supplement. In this study, compounds present in Hawaiian Noni fruit juice, with anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were identified. Five compounds were isolated using a bioassay-driven technique and phytochemical analysis of noni fruit juice: asperulosidic acid (1), rutin (2), nonioside A (3), (2E,4E,7Z)-deca-2,4,7-trienoate-2-O-β-d-glucopyranosyl-β-d-glucopyranoside (4), and tricetin (5). The structures of these five compounds were determined via NMR spectroscopy and LC/MS. In an anti-inflammatory assay, compounds 1-5 inhibited the production of nitric oxide (NO), which is a proinflammatory mediator, in LPS-stimulated macrophages. Moreover, the mechanisms underlying the anti-inflammatory effects of compounds 1-5 were investigated. Parallel to the inhibition of NO production, treatment with compounds 1-5 downregulated the expression of IKKα/β, I-κBα, and NF-κB p65 in LPS-stimulated macrophages. Furthermore, treatment with compounds 1-5 downregulated the expression of nitric oxide synthase and cyclooxygenase-2. Thus, these data demonstrated that compounds 1-5 present in noni fruit juice, exhibited potential anti-inflammatory activity; these active compounds may contribute preventively and therapeutically against inflammatory diseases.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Peng Huang
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA; (P.H.); (M.Q.); (A.M.); (X.W.)
| | - Mallique Qader
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA; (P.H.); (M.Q.); (A.M.); (X.W.)
| | - Arulmani Manavalan
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA; (P.H.); (M.Q.); (A.M.); (X.W.)
| | - Xiaohua Wu
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA; (P.H.); (M.Q.); (A.M.); (X.W.)
| | - Jin-Chul Kim
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea;
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Shugeng Cao
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA; (P.H.); (M.Q.); (A.M.); (X.W.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| |
Collapse
|