1
|
Marfisi D, Giannelli M, Marzi C, Del Meglio J, Barucci A, Masturzo L, Vignali C, Mascalchi M, Traino A, Casolo G, Diciotti S, Tessa C. Test-retest repeatability of myocardial radiomic features from quantitative cardiac magnetic resonance T1 and T2 mapping. Magn Reson Imaging 2024; 113:110217. [PMID: 39067653 DOI: 10.1016/j.mri.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Radiomics of cardiac magnetic resonance (MR) imaging has proved to be potentially useful in the study of various myocardial diseases. Therefore, assessing the repeatability degree in radiomic features measurement is of fundamental importance. The aim of this study was to assess test-retest repeatability of myocardial radiomic features extracted from quantitative T1 and T2 maps. A representative group of 24 subjects (mean age 54 ± 18 years) referred for clinical cardiac MR imaging were enrolled in the study. For each subject, T1 and T2 mapping through MOLLI and T2-prepared TrueFISP acquisition sequences, respectively, were performed at 1.5 T. Then, 98 radiomic features of different classes (shape, first-order, second-order) were extracted from a region of interest encompassing the whole left ventricle myocardium in a short axis slice. The repeatability was assessed performing different and complementary analyses: intraclass correlation coefficient (ICC) and limits of agreement (LOA) (i.e., the interval within which 95% of the percentage differences between two repeated measures are expected to lie). Radiomic features were characterized by a relatively wide range of repeatability degree in terms of both ICC and LOA. Overall, 44.9% and 38.8% of radiomic features showed ICC values > 0.75 for T1 and T2 maps, respectively, while 25.5% and 23.4% of radiomic features showed LOA between ±10%. A subset of radiomic features for T1 (Mean, Median, 10Percentile, 90Percentile, RootMeanSquared, Imc2, RunLengthNonUniformityNormalized, RunPercentage and ShortRunEmphasis) and T2 (MaximumDiameter, RunLengthNonUniformityNormalized, RunPercentage, ShortRunEmphasis) maps presented both ICC > 0.75 and LOA between ±5%. Overall, radiomic features extracted from T1 maps showed better repeatability performance than those extracted from T2 maps, with shape features characterized by better repeatability than first-order and textural features. Moreover, only a limited subset of 9 and 4 radiomic features for T1 and T2 maps, respectively, showed high repeatability degree in terms of both ICC and LOA. These results confirm the importance of assessing test-retest repeatability degree in radiomic feature estimation and might be useful for a more effective/reliable use of myocardial T1 and T2 mapping radiomics in clinical or research studies.
Collapse
Affiliation(s)
- Daniela Marfisi
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy.
| | - Chiara Marzi
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, 50134 Florence, Italy
| | - Jacopo Del Meglio
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Andrea Barucci
- Institute of Applied Physics "Nello Carrara" (IFAC), Council of National Research (CNR), 50019 Sesto Fiorentino, Italy
| | - Luigi Masturzo
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Claudio Vignali
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50121 Florence, Italy; Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Antonio Traino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Giancarlo Casolo
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, 47522 Cesena, Italy
| | - Carlo Tessa
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Apuane Hospital, 54100 Massa, Italy
| |
Collapse
|
2
|
Trojani V, Bassi MC, Verzellesi L, Bertolini M. Impact of Preprocessing Parameters in Medical Imaging-Based Radiomic Studies: A Systematic Review. Cancers (Basel) 2024; 16:2668. [PMID: 39123396 PMCID: PMC11311340 DOI: 10.3390/cancers16152668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Lately, radiomic studies featuring the development of a signature to use in prediction models in diagnosis or prognosis outcomes have been increasingly published. While the results are shown to be promising, these studies still have many pitfalls and limitations. One of the main issues of these studies is that radiomic features depend on how the images are preprocessed before their computation. Since, in widely known and used software for radiomic features calculation, it is possible to set these preprocessing parameters before the calculation of the radiomic feature, there are ongoing studies assessing the stability and repeatability of radiomic features to find the most suitable preprocessing parameters for every used imaging modality. MATERIALS AND METHODS We performed a comprehensive literature search using four electronic databases: PubMed, Cochrane Library, Embase, and Scopus. Mesh terms and free text were modeled in search strategies for databases. The inclusion criteria were studies where preprocessing parameters' influence on feature values and model predictions was addressed. Records lacking information on image acquisition parameters were excluded, and any eligible studies with full-text versions were included in the review process, while conference proceedings and monographs were disregarded. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool to investigate the risk of bias. We synthesized our data in a table divided by the imaging modalities subgroups. RESULTS After applying the inclusion and exclusion criteria, we selected 43 works. This review examines the impact of preprocessing parameters on the reproducibility and reliability of radiomic features extracted from multimodality imaging (CT, MRI, CBCT, and PET/CT). Standardized preprocessing is crucial for consistent radiomic feature extraction. Key preprocessing steps include voxel resampling, normalization, and discretization, which influence feature robustness and reproducibility. In total, 44% of the included works studied the effects of an isotropic voxel resampling, and most studies opted to employ a discretization strategy. From 2021, several studies started selecting the best set of preprocessing parameters based on models' best performance. As for comparison metrics, ICC was the most used in MRI studies in 58% of the screened works. CONCLUSIONS From our work, we highlighted the need to harmonize the use of preprocessing parameters and their values, especially in light of future studies of prospective studies, which are still lacking in the current literature.
Collapse
Affiliation(s)
- Valeria Trojani
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| | | | - Laura Verzellesi
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| | - Marco Bertolini
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| |
Collapse
|
3
|
Vellala A, Mogler C, Haag F, Tollens F, Rudolf H, Pietsch F, Wängler C, Wängler B, Schoenberg SO, Froelich MF, Hertel A. Comparing quantitative image parameters between animal and clinical CT-scanners: a translational phantom study analysis. Front Med (Lausanne) 2024; 11:1407235. [PMID: 38903806 PMCID: PMC11188677 DOI: 10.3389/fmed.2024.1407235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose This study compares phantom-based variability of extracted radiomics features from scans on a photon counting CT (PCCT) and an experimental animal PET/CT-scanner (Albira II) to investigate the potential of radiomics for translation from animal models to human scans. While oncological basic research in animal PET/CT has allowed an intrinsic comparison between PET and CT, but no 1:1 translation to a human CT scanner due to resolution and noise limitations, Radiomics as a statistical and thus scale-independent method can potentially close the critical gap. Methods Two phantoms were scanned on a PCCT and animal PET/CT-scanner with different scan parameters and then the radiomics parameters were extracted. A Principal Component Analysis (PCA) was conducted. To overcome the limitation of a small dataset, a data augmentation technique was applied. A Ridge Classifier was trained and a Feature Importance- and Cluster analysis was performed. Results PCA and Cluster Analysis shows a clear differentiation between phantom types while emphasizing the comparability of both scanners. The Ridge Classifier exhibited a strong training performance with 93% accuracy, but faced challenges in generalization with a test accuracy of 62%. Conclusion These results show that radiomics has great potential as a translational tool between animal models and human routine diagnostics, especially using the novel photon counting technique. This is another crucial step towards integration of radiomics analysis into clinical practice.
Collapse
Affiliation(s)
- Abhinay Vellala
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolin Mogler
- Department of Pathology, Technical University of Munich, Munich, Germany
| | - Florian Haag
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Tollens
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henning Rudolf
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Friedrich Pietsch
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carmen Wängler
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Björn Wängler
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan O. Schoenberg
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias F. Froelich
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Hertel
- Department of Radiology and Nuclear medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
Tafuri B, De Blasi R, Nigro S, Logroscino G. Explainable machine learning radiomics model for Primary Progressive Aphasia classification. Front Syst Neurosci 2024; 18:1324437. [PMID: 38562661 PMCID: PMC10982515 DOI: 10.3389/fnsys.2024.1324437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Primary Progressive Aphasia (PPA) is a neurodegenerative disease characterized by linguistic impairment. The two main clinical subtypes are semantic (svPPA) and non-fluent/agrammatic (nfvPPA) variants. Diagnosing and classifying PPA patients represents a complex challenge that requires the integration of multimodal information, including clinical, biological, and radiological features. Structural neuroimaging can play a crucial role in aiding the differential diagnosis of PPA and constructing diagnostic support systems. Methods In this study, we conducted a white matter texture analysis on T1-weighted images, including 56 patients with PPA (31 svPPA and 25 nfvPPA), and 53 age- and sex-matched controls. We trained a tree-based algorithm over combined clinical/radiomics measures and used Shapley Additive Explanations (SHAP) model to extract the greater impactful measures in distinguishing svPPA and nfvPPA patients from controls and each other. Results Radiomics-integrated classification models demonstrated an accuracy of 95% in distinguishing svPPA patients from controls and of 93.7% in distinguishing svPPA from nfvPPA. An accuracy of 93.7% was observed in differentiating nfvPPA patients from controls. Moreover, Shapley values showed the strong involvement of the white matter near left entorhinal cortex in patients classification models. Discussion Our study provides new evidence for the usefulness of radiomics features in classifying patients with svPPA and nfvPPA, demonstrating the effectiveness of an explainable machine learning approach in extracting the most impactful features for assessing PPA.
Collapse
Affiliation(s)
- Benedetta Tafuri
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| |
Collapse
|
5
|
Marinkovic M, Stojanovic-Rundic S, Stanojevic A, Tomasevic A, Jankovic R, Zoidakis J, Castellví-Bel S, Fijneman RJA, Cavic M, Radulovic M. Performance and Dimensionality of Pretreatment MRI Radiomics in Rectal Carcinoma Chemoradiotherapy Prediction. J Clin Med 2024; 13:421. [PMID: 38256556 PMCID: PMC10816962 DOI: 10.3390/jcm13020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: This study aimed to develop a machine learning model based on radiomics of pretreatment magnetic resonance imaging (MRI) 3D T2W contrast sequence scans combined with clinical parameters (CP) to predict neoadjuvant chemoradiotherapy (nCRT) response in patients with locally advanced rectal carcinoma (LARC). The study also assessed the impact of radiomics dimensionality on predictive performance. (2) Methods: Seventy-five patients were prospectively enrolled with clinicopathologically confirmed LARC and nCRT before surgery. Tumor properties were assessed by calculating 2141 radiomics features. Least absolute shrinkage selection operator (LASSO) and multivariate regression were used for feature selection. (3) Results: Two predictive models were constructed, one starting from 72 CP and 107 radiomics features, and the other from 72 CP and 1862 radiomics features. The models revealed moderately advantageous impact of increased dimensionality, with their predictive respective AUCs of 0.86 and 0.90 in the entire cohort and 0.84 within validation folds. Both models outperformed the CP-only model (AUC = 0.80) which served as the benchmark for predictive performance without radiomics. (4) Conclusions: Predictive models developed in this study combining pretreatment MRI radiomics and clinicopathological features may potentially provide a routine clinical predictor of chemoradiotherapy responders, enabling clinicians to personalize treatment strategies for rectal carcinoma.
Collapse
Affiliation(s)
- Mladen Marinkovic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (M.M.); (S.S.-R.); (A.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Suzana Stojanovic-Rundic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (M.M.); (S.S.-R.); (A.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Stanojevic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (A.S.); (R.J.); (M.C.)
| | - Aleksandar Tomasevic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (M.M.); (S.S.-R.); (A.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (A.S.); (R.J.); (M.C.)
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Sergi Castellví-Bel
- Gastroenterology Deparment, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Clínic Barcelona, University of Barcelona, 08036 Barcelona, Spain;
| | - Remond J. A. Fijneman
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (A.S.); (R.J.); (M.C.)
| | - Marko Radulovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (A.S.); (R.J.); (M.C.)
| |
Collapse
|