1
|
Nuwayhid R, Schulz T, Siemers F, Schreiter J, Kobbe P, Hofmann G, Langer S, Kurow O. A Platform for Testing the Biocompatibility of Implants: Silicone Induces a Proinflammatory Response in a 3D Skin Equivalent. Biomedicines 2024; 12:224. [PMID: 38275396 PMCID: PMC10813245 DOI: 10.3390/biomedicines12010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Biocompatibility testing of materials is carried out in 2D cell cultures or animal models despite serious limitations. 3D skin equivalents are advanced in vitro models for human skin. Silicone has been shown to be noncytotoxic but capable of eliciting an immune response. Our aim was to (1) establish a 3D skin equivalent to (2) assess the proinflammatory properties of silicone. We developed a coculture of keratinocytes and fibroblasts resulting in a 3D skin equivalent with an implant using samples from a breast implant. Samples with and without the silicone implant were studied histologically and immunohistochemically in comparison to native human skin samples. Cytotoxicity was assessed via LDH-assay, and cytokine response was assessed via ELISA. Histologically, our 3D skin equivalents had a four-layered epidermal and a dermal component. The presence of tight junctions was demonstrated in immunofluorescence. The only difference in 3D skin equivalents with implants was an epidermal thinning. Implanting the silicone samples did not cause more cell death, however, an inflammatory cytokine response was triggered. We were able to establish an organotypical 3D skin equivalent with an implant, which can be utilised for studies on biocompatibility of materials. This first integration of silicone into a 3D skin equivalent confirmed previous findings on silicone being non-cell-toxic but capable of exerting a proinflammatory effect.
Collapse
Affiliation(s)
- Rima Nuwayhid
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (T.S.); (S.L.)
| | - Torsten Schulz
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (T.S.); (S.L.)
| | - Frank Siemers
- Department of Plastic, Hand Surgery and Burn Care, BG Klinikum Bergmannstrost, 06112 Halle, Germany;
| | | | - Philipp Kobbe
- Department of Trauma and Reconstructive Surgery, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany;
- Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost, 06112 Halle, Germany
| | - Gunther Hofmann
- Department of Trauma, Plastic and Reconstructive Surgery, University Hospital Jena, 07747 Jena, Germany;
| | - Stefan Langer
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (T.S.); (S.L.)
| | - Olga Kurow
- Department of Orthopaedic, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany; (T.S.); (S.L.)
| |
Collapse
|
2
|
Ahangar P, Li J, Nkindi LS, Mohammadrezaee Z, Cooke ME, Martineau PA, Weber MH, Saade E, Nateghi N, Rosenzweig DH. A Nanoporous 3D-Printed Scaffold for Local Antibiotic Delivery. MICROMACHINES 2023; 15:83. [PMID: 38258202 PMCID: PMC10819679 DOI: 10.3390/mi15010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Limitations of bone defect reconstruction include poor bone healing and osteointegration with acrylic cements, lack of strength with bone putty/paste, and poor osteointegration. Tissue engineering aims to bridge these gaps through the use of bioactive implants. However, there is often a risk of infection and biofilm formation associated with orthopedic implants, which may develop anti-microbial resistance. To promote bone repair while also locally delivering therapeutics, 3D-printed implants serve as a suitable alternative. Soft, nanoporous 3D-printed filaments made from a thermoplastic polyurethane and polyvinyl alcohol blend, LAY-FOMM and LAY-FELT, have shown promise for drug delivery and orthopedic applications. Here, we compare 3D printability and sustained antibiotic release kinetics from two types of commercial 3D-printed porous filaments suitable for bone tissue engineering applications. We found that both LAY-FOMM and LAY-FELT could be consistently printed into scaffolds for drug delivery. Further, the materials could sustainably release Tetracycline over 3 days, independent of material type and infill geometry. The drug-loaded materials did not show any cytotoxicity when cultured with primary human fibroblasts. We conclude that both LAY-FOMM and LAY-FELT 3D-printed scaffolds are suitable devices for local antibiotic delivery applications, and they may have potential applications to prophylactically reduce infections in orthopedic reconstruction surgery.
Collapse
Affiliation(s)
- Pouyan Ahangar
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (P.A.); (M.E.C.); (P.A.M.); (M.H.W.)
| | - Jialiang Li
- Department of Science, TAV College, Montreal, QC H3W 3E1, Canada; (J.L.); (L.S.N.); (Z.M.); (E.S.); (N.N.)
| | - Leslie S. Nkindi
- Department of Science, TAV College, Montreal, QC H3W 3E1, Canada; (J.L.); (L.S.N.); (Z.M.); (E.S.); (N.N.)
| | - Zohreh Mohammadrezaee
- Department of Science, TAV College, Montreal, QC H3W 3E1, Canada; (J.L.); (L.S.N.); (Z.M.); (E.S.); (N.N.)
| | - Megan E. Cooke
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (P.A.); (M.E.C.); (P.A.M.); (M.H.W.)
| | - Paul A. Martineau
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (P.A.); (M.E.C.); (P.A.M.); (M.H.W.)
| | - Michael H. Weber
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (P.A.); (M.E.C.); (P.A.M.); (M.H.W.)
| | - Elie Saade
- Department of Science, TAV College, Montreal, QC H3W 3E1, Canada; (J.L.); (L.S.N.); (Z.M.); (E.S.); (N.N.)
| | - Nima Nateghi
- Department of Science, TAV College, Montreal, QC H3W 3E1, Canada; (J.L.); (L.S.N.); (Z.M.); (E.S.); (N.N.)
| | - Derek H. Rosenzweig
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (P.A.); (M.E.C.); (P.A.M.); (M.H.W.)
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| |
Collapse
|