1
|
Wu X, Guo C, Lin J, Lin Z, Chen Q. Mixed attention ensemble for esophageal motility disorders classification. PLoS One 2025; 20:e0317912. [PMID: 39951417 PMCID: PMC11828345 DOI: 10.1371/journal.pone.0317912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025] Open
Abstract
Esophageal motility disorders result from dysfunction of the lower esophageal sphincter and abnormalities in esophageal peristalsis, often presenting symptoms such as dysphagia, chest pain, or heartburn. High-resolution esophageal manometry currently serves as the primary diagnostic method for these disorders, but it has some shortcomings including technical complexity, high demands on diagnosticians, and time-consuming diagnostic process. Therefore, based on ensemble learning with a mixed voting mechanism and multi-dimensional attention enhancement mechanism, a classification model for esophageal motility disorders is proposed and named mixed attention ensemble(MAE) in this paper, which integrates four distinct base models, utilizing a multi-dimensional attention mechanism to extract important features and being weighted with a mixed voting mechanism. We conducted extensive experiments through exploring three different voting strategies and validating our approach on our proprietary dataset. The MAE model outperforms traditional voting ensembles on multiple metrics, achieving an accuracy of 98.48% while preserving a low parameter. The experimental results demonstrate the effectiveness of our method, providing valuable reference to pre-diagnosis for physicians.
Collapse
Affiliation(s)
- Xiaofang Wu
- College of Electromechanical and Information Engineering, Putian University, Putian, Fujian, China
| | - Cunhan Guo
- School of Emergency Management Science and Engineering, University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Junwu Lin
- New Engineering Industry College, Putian University, Putian, Fujian, China
- Putian Electronic Information Industry Technology Research Institute, Putian University, Putian, Fujian, China
| | - Zhenheng Lin
- New Engineering Industry College, Putian University, Putian, Fujian, China
- Putian Electronic Information Industry Technology Research Institute, Putian University, Putian, Fujian, China
| | - Qun Chen
- New Engineering Industry College, Putian University, Putian, Fujian, China
| |
Collapse
|
2
|
Zubair Rahman AMJM, Mythili R, Chokkanathan K, Mahesh TR, Vanitha K, Yimer TE. Enhancing image-based diagnosis of gastrointestinal tract diseases through deep learning with EfficientNet and advanced data augmentation techniques. BMC Med Imaging 2024; 24:306. [PMID: 39533216 PMCID: PMC11555998 DOI: 10.1186/s12880-024-01479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The early detection and diagnosis of gastrointestinal tract diseases, such as ulcerative colitis, polyps, and esophagitis, are crucial for timely treatment. Traditional imaging techniques often rely on manual interpretation, which is subject to variability and may lack precision. Current methodologies leverage conventional deep learning models that, while effective to an extent, often suffer from overfitting and generalization issues on medical image datasets due to the intricate and subtle variations in disease manifestations. These models typically do not fully utilize the potential of transfer learning or advanced data augmentation, leading to less-than-optimal performance, especially in diverse real-world scenarios where data variability is high. This study introduces a robust model using the EfficientNetB5 architecture combined with a sophisticated data augmentation strategy. The model is tailored for the high variability and intricate details present in gastrointestinal tract disease images. By integrating transfer learning with maximal pooling and extensive regularization, the model aims to enhance diagnostic accuracy and reduce overfitting. The proposed model achieved a test accuracy of 98.89%, surpassing traditional methods by incorporating advanced regularization and augmentation techniques. The application of horizontal flipping and dynamic scaling during training significantly improved the model's ability to generalize, evidenced by a low-test loss of 0.230 and high precision metrics across all classes. The proposed deep learning framework demonstrates superior performance in the automated classification of gastrointestinal diseases from image data. By addressing key limitations of existing models through innovative techniques, this study contributes to the enhancement of diagnostic processes in medical imaging, potentially leading to more accurate and timely disease interventions.
Collapse
Affiliation(s)
- A M J Md Zubair Rahman
- Al-Ameen Engineering College (Autonomous), Karundevanpalayam, Nanjai Uthukuli (P.O), Erode, 638104, India
| | - R Mythili
- Department Of Information Technology, SRM Institute Of Science and Technology, Ramapuram, Chennai, India
| | - K Chokkanathan
- Department of AI, Madanapalle Institute of TEchnology &Science, Madanapalle, India
| | - T R Mahesh
- Department of Computer Science and Engineering JAIN (Deemed-to-be University), Bengaluru, 562112, India
| | - K Vanitha
- Department of Computer Science and Engineering, Faculty of Engineering, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | | |
Collapse
|
3
|
Nie Z, Xu M, Wang Z, Lu X, Song W. A Review of Application of Deep Learning in Endoscopic Image Processing. J Imaging 2024; 10:275. [PMID: 39590739 PMCID: PMC11595772 DOI: 10.3390/jimaging10110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.
Collapse
Affiliation(s)
- Zihan Nie
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (Z.N.); (M.X.); (Z.W.); (X.L.)
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
| | - Muhao Xu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (Z.N.); (M.X.); (Z.W.); (X.L.)
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
| | - Zhiyong Wang
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (Z.N.); (M.X.); (Z.W.); (X.L.)
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
| | - Xiaoqi Lu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (Z.N.); (M.X.); (Z.W.); (X.L.)
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
| | - Weiye Song
- School of Mechanical Engineering, Shandong University, Jinan 250061, China; (Z.N.); (M.X.); (Z.W.); (X.L.)
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, China
| |
Collapse
|
4
|
Mudavadkar GR, Deng M, Al-Heejawi SMA, Arora IH, Breggia A, Ahmad B, Christman R, Ryan ST, Amal S. Gastric Cancer Detection with Ensemble Learning on Digital Pathology: Use Case of Gastric Cancer on GasHisSDB Dataset. Diagnostics (Basel) 2024; 14:1746. [PMID: 39202233 PMCID: PMC11354078 DOI: 10.3390/diagnostics14161746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Gastric cancer has become a serious worldwide health concern, emphasizing the crucial importance of early diagnosis measures to improve patient outcomes. While traditional histological image analysis is regarded as the clinical gold standard, it is labour intensive and manual. In recognition of this problem, there has been a rise in interest in the use of computer-aided diagnostic tools to help pathologists with their diagnostic efforts. In particular, deep learning (DL) has emerged as a promising solution in this sector. However, current DL models are still restricted in their ability to extract extensive visual characteristics for correct categorization. To address this limitation, this study proposes the use of ensemble models, which incorporate the capabilities of several deep-learning architectures and use aggregate knowledge of many models to improve classification performance, allowing for more accurate and efficient gastric cancer detection. To determine how well these proposed models performed, this study compared them with other works, all of which were based on the Gastric Histopathology Sub-Size Images Database, a publicly available dataset for gastric cancer. This research demonstrates that the ensemble models achieved a high detection accuracy across all sub-databases, with an average accuracy exceeding 99%. Specifically, ResNet50, VGGNet, and ResNet34 performed better than EfficientNet and VitNet. For the 80 × 80-pixel sub-database, ResNet34 exhibited an accuracy of approximately 93%, VGGNet achieved 94%, and the ensemble model excelled with 99%. In the 120 × 120-pixel sub-database, the ensemble model showed 99% accuracy, VGGNet 97%, and ResNet50 approximately 97%. For the 160 × 160-pixel sub-database, the ensemble model again achieved 99% accuracy, VGGNet 98%, ResNet50 98%, and EfficientNet 92%, highlighting the ensemble model's superior performance across all resolutions. Overall, the ensemble model consistently provided an accuracy of 99% across the three sub-pixel categories. These findings show that ensemble models may successfully detect critical characteristics from smaller patches and achieve high performance. The findings will help pathologists diagnose gastric cancer using histopathological images, leading to earlier identification and higher patient survival rates.
Collapse
Affiliation(s)
- Govind Rajesh Mudavadkar
- College of Engineering, Northeastern University, Boston, MA 02115, USA; (G.R.M.); (M.D.); (S.M.A.A.-H.)
| | - Mo Deng
- College of Engineering, Northeastern University, Boston, MA 02115, USA; (G.R.M.); (M.D.); (S.M.A.A.-H.)
| | | | - Isha Hemant Arora
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA;
| | - Anne Breggia
- MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Bilal Ahmad
- Maine Medical Center, Portland, ME 04102, USA; (B.A.); (R.C.); (S.T.R.)
| | - Robert Christman
- Maine Medical Center, Portland, ME 04102, USA; (B.A.); (R.C.); (S.T.R.)
| | - Stephen T. Ryan
- Maine Medical Center, Portland, ME 04102, USA; (B.A.); (R.C.); (S.T.R.)
| | - Saeed Amal
- The Roux Institute, Department of Bioengineering, College of Engineering at Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Hossain T, Shamrat FMJM, Zhou X, Mahmud I, Mazumder MSA, Sharmin S, Gururajan R. Development of a multi-fusion convolutional neural network (MF-CNN) for enhanced gastrointestinal disease diagnosis in endoscopy image analysis. PeerJ Comput Sci 2024; 10:e1950. [PMID: 38660192 PMCID: PMC11041948 DOI: 10.7717/peerj-cs.1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
Gastrointestinal (GI) diseases are prevalent medical conditions that require accurate and timely diagnosis for effective treatment. To address this, we developed the Multi-Fusion Convolutional Neural Network (MF-CNN), a deep learning framework that strategically integrates and adapts elements from six deep learning models, enhancing feature extraction and classification of GI diseases from endoscopic images. The MF-CNN architecture leverages truncated and partially frozen layers from existing models, augmented with novel components such as Auxiliary Fusing Layers (AuxFL), Fusion Residual Block (FuRB), and Alpha Dropouts (αDO) to improve precision and robustness. This design facilitates the precise identification of conditions such as ulcerative colitis, polyps, esophagitis, and healthy colons. Our methodology involved preprocessing endoscopic images sourced from open databases, including KVASIR and ETIS-Larib Polyp DB, using adaptive histogram equalization (AHE) to enhance their quality. The MF-CNN framework supports detailed feature mapping for improved interpretability of the model's internal workings. An ablation study was conducted to validate the contribution of each component, demonstrating that the integration of AuxFL, αDO, and FuRB played a crucial part in reducing overfitting and efficiency saturation and enhancing overall model performance. The MF-CNN demonstrated outstanding performance in terms of efficacy, achieving an accuracy rate of 99.25%. It also excelled in other key performance metrics with a precision of 99.27%, a recall of 99.25%, and an F1-score of 99.25%. These metrics confirmed the model's proficiency in accurate classification and its capability to minimize false positives and negatives across all tested GI disease categories. Furthermore, the AUC values were exceptional, averaging 1.00 for both test and validation sets, indicating perfect discriminative ability. The findings of the P-R curve analysis and confusion matrix further confirmed the robust classification performance of the MF-CNN. This research introduces a technique for medical imaging that can potentially transform diagnostics in gastrointestinal healthcare facilities worldwide.
Collapse
Affiliation(s)
- Tanzim Hossain
- Department of Software Engineering, Daffodil International University, Dhaka, Bangladesh
| | | | - Xujuan Zhou
- School of Business, University of Southern Queensland, Springfield, Australia
| | - Imran Mahmud
- Department of Software Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Md. Sakib Ali Mazumder
- Department of Software Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Sharmin Sharmin
- Department of Computer System and Technology, University of Malaya, Kuala Lumpur, Malaysia
| | - Raj Gururajan
- School of Business, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
6
|
Waheed Z, Gui J. An optimized ensemble model bfased on cuckoo search with Levy Flight for automated gastrointestinal disease detection. MULTIMEDIA TOOLS AND APPLICATIONS 2024; 83:89695-89722. [DOI: 10.1007/s11042-024-18937-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 03/13/2024] [Indexed: 01/15/2025]
|
7
|
K. P AG, D RR, N MS, P LB. Gastrointestinal tract disease detection via deep learning based structural and statistical features optimized hexa-classification model. Technol Health Care 2024; 32:4453-4473. [PMID: 39031411 PMCID: PMC11612951 DOI: 10.3233/thc-240603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/01/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Gastrointestinal tract (GIT) diseases impact the entire digestive system, spanning from the mouth to the anus. Wireless Capsule Endoscopy (WCE) stands out as an effective analytic instrument for Gastrointestinal tract diseases. Nevertheless, accurately identifying various lesion features, such as irregular sizes, shapes, colors, and textures, remains challenging in this field. OBJECTIVE Several computer vision algorithms have been introduced to tackle these challenges, but many relied on handcrafted features, resulting in inaccuracies in various instances. METHODS In this work, a novel Deep SS-Hexa model is proposed which is a combination two different deep learning structures for extracting two different features from the WCE images to detect various GIT ailment. The gathered images are denoised by weighted median filter to remove the noisy distortions and augment the images for enhancing the training data. The structural and statistical (SS) feature extraction process is sectioned into two phases for the analysis of distinct regions of gastrointestinal. In the first stage, statistical features of the image are retrieved using MobileNet with the support of SiLU activation function to retrieve the relevant features. In the second phase, the segmented intestine images are transformed into structural features to learn the local information. These SS features are parallelly fused for selecting the best relevant features with walrus optimization algorithm. Finally, Deep belief network (DBN) is used classified the GIT diseases into hexa classes namely normal, ulcer, pylorus, cecum, esophagitis and polyps on the basis of the selected features. RESULTS The proposed Deep SS-Hexa model attains an overall average accuracy of 99.16% in GIT disease detection based on KVASIR and KID datasets. The proposed Deep SS-Hexa model achieves high level of accuracy with minimal computational cost in the recognition of GIT illness. CONCLUSIONS The proposed Deep SS-Hexa Model progresses the overall accuracy range of 0.04%, 0.80% better than GastroVision, Genetic algorithm based on KVASIR dataset and 0.60%, 1.21% better than Modified U-Net, WCENet based on KID dataset respectively.
Collapse
Affiliation(s)
- Ajitha Gladis K. P
- Department of Information Technology, CSI Institute of Technology, Thovalai, India
| | - Roja Ramani D
- Department of Computer Science and Engineering, New Horizon College of Engineering, Bengaluru, India
| | - Mohana Suganthi N
- Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Linu Babu P
- Department of Electronics and Communication Engineering, IES College of Engineering, Thrissur, India
| |
Collapse
|
8
|
Diwakar M, Singh P, Ravi V. Medical Data Analysis Meets Artificial Intelligence (AI) and Internet of Medical Things (IoMT). Bioengineering (Basel) 2023; 10:1370. [PMID: 38135961 PMCID: PMC10740669 DOI: 10.3390/bioengineering10121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
AI is a contemporary methodology rooted in the field of computer science [...].
Collapse
Affiliation(s)
- Manoj Diwakar
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun 248002, India
| | - Prabhishek Singh
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida 201310, India;
| | - Vinayakumar Ravi
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar 34754, Saudi Arabia;
| |
Collapse
|
9
|
Huang J, Fan X, Liu W. Applications and Prospects of Artificial Intelligence-Assisted Endoscopic Ultrasound in Digestive System Diseases. Diagnostics (Basel) 2023; 13:2815. [PMID: 37685350 PMCID: PMC10487217 DOI: 10.3390/diagnostics13172815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Endoscopic ultrasound (EUS) has emerged as a widely utilized tool in the diagnosis of digestive diseases. In recent years, the potential of artificial intelligence (AI) in healthcare has been gradually recognized, and its superiority in the field of EUS is becoming apparent. Machine learning (ML) and deep learning (DL) are the two main AI algorithms. This paper aims to outline the applications and prospects of artificial intelligence-assisted endoscopic ultrasound (EUS-AI) in digestive diseases over the past decade. The results demonstrated that EUS-AI has shown superiority or at least equivalence to traditional methods in the diagnosis, prognosis, and quality control of subepithelial lesions, early esophageal cancer, early gastric cancer, and pancreatic diseases including pancreatic cystic lesions, autoimmune pancreatitis, and pancreatic cancer. The implementation of EUS-AI has opened up new avenues for individualized precision medicine and has introduced novel diagnostic and treatment approaches for digestive diseases.
Collapse
Affiliation(s)
| | | | - Wentian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; (J.H.); (X.F.)
| |
Collapse
|