1
|
Carrasco-Mantis A, Reina-Romo E, Sanz-Herrera JA. A multiphysics hybrid continuum - agent-based model of in vitro vascularized organoids. Comput Biol Med 2024; 185:109559. [PMID: 39709871 DOI: 10.1016/j.compbiomed.2024.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Organoids are 3D in vitro models that fulfill a hierarchical function, representing a small version of living tissues and, therefore, a good approximation of cellular mechanisms. However, one of the main disadvantages of these models is the appearance of a necrotic core due to poor vascularization. The aim of this work is the development of a numerical framework that incorporates the mechanical stimulation as a key factor in organoid vascularization. Parameters, such as fluid velocity and nutrient consumption, are analyzed along the organoid evolution. METHODS The mathematical model created for this purpose combines continuum and discrete approaches. In the continuum part, the fluid flow and the diffusion of oxygen and nutrients are modeled using a finite element method approach. Meanwhile, the growth of the organoid, blood vessel evolution, as well as their interaction with the surrounding environment, are modeled using agent-based methods. RESULTS Continuum model outcomes include the distribution of shear stress, pressure and fluid velocity around the organoid surface, in addition to the concentration of oxygen and nutrients in its interior. The agent models account for cell proliferation, differentiation, organoid growth and blood vessel morphology, for the different case studies considered. CONCLUSIONS Two main conclusions are achieved in this work: (i) the results of the study quantitatively predict in vitro data, with an enhanced blood vessel invasion under high fluid flow and (ii) the diffusion and consumption model parameters of the organoid cells determine the thickness of the proliferative, quiescent, hypoxic and necrotic layers.
Collapse
Affiliation(s)
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
| | | |
Collapse
|
2
|
El Hajj S, Ntaté MB, Breton C, Siadous R, Aid R, Dupuy M, Letourneur D, Amédée J, Duval H, David B. Bone Spheroid Development Under Flow Conditions with Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells in a 3D Porous Hydrogel Supplemented with Hydroxyapatite. Gels 2024; 10:666. [PMID: 39451319 PMCID: PMC11506954 DOI: 10.3390/gels10100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Understanding the niche interactions between blood and bone through the in vitro co-culture of osteo-competent cells and endothelial cells is a key factor in unraveling therapeutic potentials in bone regeneration. This can be additionally supported by employing numerical simulation techniques to assess local physical factors, such as oxygen concentration, and mechanical stimuli, such as shear stress, that can mediate cellular communication. In this study, we developed a Mesenchymal Stem Cell line (MSC) and a Human Umbilical Vein Endothelial Cell line (HUVEC), which were co-cultured under flow conditions in a three-dimensional, porous, natural pullulan/dextran scaffold that was supplemented with hydroxyapatite crystals that allowed for the spontaneous formation of spheroids. After 2 weeks, their viability was higher under the dynamic conditions (>94%) than the static conditions (<75%), with dead cells central in the spheroids. Mineralization and collagen IV production increased under the dynamic conditions, correlating with osteogenesis and vasculogenesis. The endothelial cells clustered at the spheroidal core by day 7. Proliferation doubled in the dynamic conditions, especially at the scaffold peripheries. Lattice Boltzmann simulations showed negligible wall shear stress in the hydrogel pores but highlighted highly oxygenated zones coinciding with cell proliferation. A strong oxygen gradient likely influenced endothelial migration and cell distribution. Hypoxia was minimal, explaining high viability and spheroid maturation in the dynamic conditions.
Collapse
Affiliation(s)
- Soukaina El Hajj
- Laboratoire de Mécanique Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Martial Bankoué Ntaté
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Cyril Breton
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Robin Siadous
- Laboratoire de Bioingénierie Tissulaire (BioTis), INSERM U1026, Université de Bordeaux, 33076 Bordeaux, France; (R.S.); (J.A.)
| | - Rachida Aid
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Paris Cité, 75018 Paris, France; (R.A.); (D.L.)
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Magali Dupuy
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Didier Letourneur
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Paris Cité, 75018 Paris, France; (R.A.); (D.L.)
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Joëlle Amédée
- Laboratoire de Bioingénierie Tissulaire (BioTis), INSERM U1026, Université de Bordeaux, 33076 Bordeaux, France; (R.S.); (J.A.)
| | - Hervé Duval
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Bertrand David
- Laboratoire de Mécanique Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
3
|
Kazempour H, Teymouri F, Khatami M, Hosseini SN. Computational modelling of the therapeutic outputs of photodynamic therapy on spheroid-on-chip models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112960. [PMID: 38991293 DOI: 10.1016/j.jphotobiol.2024.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Photodynamic therapy (PDT) is a medical radio chemotherapeutic method that uses light, photosensitizing agents, and oxygen to produce cytotoxic compounds, which eliminate malignant cells. Recently, Microfluidic systems have been used to analyse photosensitizers (PSs) due to their potential to replicate in vivo environments. While prior studies have established a strong correlation between reacted singlet oxygen concentration and PDT-induced cellular death, the effects that the ambient fluid flow might have on the concentration of oxygen and PS have been disregarded in many, which limits the reliability of the results. Herein, we coupled the transport of oxygen and PS throughout the ambient medium and within the spheroidal multicellular aggregate to initially study the profiles of oxygen and PS concentration alongside PDT-induced cellular death throughout the spheroid before and after radiation. The attained results indicate that the PDT-induced cellular death initiates on the surface of the spheroids and subsequently spreads to the neighbouring regions, which is in great accordance with experimental results. Afterward, the effects that drug-light interval (DLI), fluence rate, PS composition, microchannel height, and inlet flow rate have on the therapeutic outcomes are studied. The findings show that adequate DLI is critical to ensure uniform distribution of PS throughout the medium, and a value of 5 h was found to be sufficient. The composition of PS is critical, as ALA-PpIX induces earlier cell death but accelerates oxygen consumption, especially in the outer layers, depriving the inner layers of oxygen necessary for PDT, which in turn disrupts and prolongs the exposure time compared to mTHPC and Photofrin. Despite the fluence rate directly influencing the singlet oxygen generation rate, increasing the fluence rate by 189 mW/cm2 would not significantly benefit us. Microwell height and inlet flow rate involve competing phenomena-increasing height or decreasing flow reduces oxygen supply and increases PS "washout" and its concentration.
Collapse
Affiliation(s)
- Hossein Kazempour
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Teymouri
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Maryam Khatami
- Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
4
|
De Luca A, Capuana E, Carbone C, Raimondi L, Carfì Pavia F, Brucato V, La Carrubba V, Giavaresi G. Three-dimensional (3D) polylactic acid gradient scaffold to study the behavior of osteosarcoma cells under dynamic conditions. J Biomed Mater Res A 2024; 112:841-851. [PMID: 38185851 DOI: 10.1002/jbm.a.37665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
This study adopts an in vitro method to recapitulate the behavior of Saos-2 cells, using a system composed of a perfusion bioreactor and poly-L-lactic acid (PLLA) scaffold fabricated using the low-cost thermally-induced phase separation (TIPS) technique. Four distinct scaffold morphologies with different pore sizes were fabricated, characterized by Scanning electron microscopy and micro-CT analysis and tested with osteosarcoma cells under static and dynamic environments to identify the best morphology for cellular growth. In order to accomplish this purpose, cell growth and matrix deposition of the Saos-2 osteosarcoma cell line were assessed using Picogreen and OsteoImage assays. The obtained data allowed us to identify the morphology that better promotes Saos-2 cellular activity in static and dynamic conditions. These findings provided valuable insights into scaffold design and fabrication strategies, emphasizing the importance of the dynamic culture to recreate an appropriate 3D osteosarcoma model. Remarkably, the gradient scaffold exhibits promise for osteosarcoma applications, offering the potential for targeted tissue engineering approaches.
Collapse
Affiliation(s)
- Angela De Luca
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Capuana
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Camilla Carbone
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Lavinia Raimondi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Valerio Brucato
- Department of Engineering, University of Palermo, Palermo, Italy
| | | | - Gianluca Giavaresi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
5
|
Ahmed Omar N, Roque J, Galvez P, Siadous R, Chassande O, Catros S, Amédée J, Roques S, Durand M, Bergeaut C, Bidault L, Aprile P, Letourneur D, Fricain JC, Fenelon M. Development of Novel Polysaccharide Membranes for Guided Bone Regeneration: In Vitro and In Vivo Evaluations. Bioengineering (Basel) 2023; 10:1257. [PMID: 38002381 PMCID: PMC10669683 DOI: 10.3390/bioengineering10111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Guided bone regeneration (GBR) procedures require selecting suitable membranes for oral surgery. Pullulan and/or dextran-based polysaccharide materials have shown encouraging results in bone regeneration as bone substitutes but have not been used to produce barrier membranes. The present study aimed to develop and characterize pullulan/dextran-derived membranes for GBR. MATERIALS AND METHODS Two pullulan/dextran-based membranes, containing or not hydroxyapatite (HA) particles, were developed. In vitro, cytotoxicity evaluation was performed using human bone marrow mesenchymal stem cells (hBMSCs). Biocompatibility was assessed on rats in a subcutaneous model for up to 16 weeks. In vivo, rat femoral defects were created on 36 rats to compare the two pullulan/dextran-based membranes with a commercial collagen membrane (Bio-Gide®). Bone repair was assessed radiologically and histologically. RESULTS Both polysaccharide membranes demonstrated cytocompatibility and biocompatibility. Micro-computed tomography (micro-CT) analyses at two weeks revealed that the HA-containing membrane promoted a significant increase in bone formation compared to Bio-Gide®. At one month, similar effects were observed among the three membranes in terms of bone regeneration. CONCLUSION The developed pullulan/dextran-based membranes evidenced biocompatibility without interfering with bone regeneration and maturation. The HA-containing membrane, which facilitated early bone regeneration and offered adequate mechanical support, showed promising potential for GBR procedures.
Collapse
Affiliation(s)
- Naïma Ahmed Omar
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Jéssica Roque
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Paul Galvez
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Robin Siadous
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Olivier Chassande
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Sylvain Catros
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| | - Joëlle Amédée
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Samantha Roques
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Marlène Durand
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Céline Bergeaut
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Laurent Bidault
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Paola Aprile
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Didier Letourneur
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Jean-Christophe Fricain
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Mathilde Fenelon
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|