1
|
Lee DY, Lee SY, Jung JW, Kim JH, Oh DH, Kim HW, Kang JH, Choi JS, Kim GD, Joo ST, Hur SJ. Review of technology and materials for the development of cultured meat. Crit Rev Food Sci Nutr 2022; 63:8591-8615. [PMID: 35466822 DOI: 10.1080/10408398.2022.2063249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cultured meat production technology suggested that can solve the problems of traditional meat production such as inadequate breeding environment, wastewater, methane gas generation, and animal ethics issues. Complementing cultured meat production methods, sales and safety concerns will make the use of cultured meat technology easier. This review contextualizes the commercialization status of cultured meat and the latest technologies and challenges associated with its production. Investigation was conducted on materials and basic cell culture technique for cultured meat culture is presented. The development of optimal cultured meat technology through these studies will be an innovative leap in food technology. The process of obtaining cells from animal muscle, culturing cells, and growing cells into meat are the basic processes of cultured meat production. The substances needed to production of cultured meat were antibiotics, digestive enzymes, basal media, serum or growth factors. Although muscle cells have been produced closer to meat due to the application of scaffolds materials and 3 D printing technology, still a limit to reducing production costs enough to be used as foods. In addition, developing edible materials is also a challenge because the materials used to produce cultured meat are still not suitable for food sources.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Won Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Hyun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Dong Hun Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Kangwong, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| |
Collapse
|
2
|
Cabral JM, da Silva CL, Diogo MM. Stem Cell Bioprocessing and Manufacturing. Bioengineering (Basel) 2020; 7:bioengineering7030084. [PMID: 32751782 PMCID: PMC7552634 DOI: 10.3390/bioengineering7030084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
The next healthcare revolution will apply regenerative medicines using human cells and tissues [...].
Collapse
|