1
|
Malagurski I, Lazic J, Ilic-Tomic T, Salevic A, Guzik M, Krzan M, Nikodinovic-Runic J, Ponjavic M. Double layer bacterial nanocellulose - poly(hydroxyoctanoate) film activated by prodigiosin as sustainable, transparent, UV-blocking material. Int J Biol Macromol 2024; 279:135087. [PMID: 39197614 DOI: 10.1016/j.ijbiomac.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Synthetic materials alternatives are crucial for reaching sustainable development goals and waste reduction. Biomaterials and biomolecules obtained through bacterial fermentation offer a viable solution. Double-layer active UV-blocking material composed of bacterial nanocellulose as an inner layer and poly(hydroxyoctanoic acid) containing prodigiosin as an active compound was produced by layer-by-layer deposition. This study referred the new material consisted of the three components produced in sustainable manner, by bacterial activity: bacterial bio-pigment prodigiosin, bacterial nanocellulose and poly(hydroytoctanoate) - biopolymer obtained by microbial fermentations. Prior the final double layer film was produced, PHO films containing different PG concentrations as a layer in charge of the bioactivity (0.2, 0.5 and 1 wt%) was casted and systematically characterized (FTIR, DSC, XRD, wettability, SEM, transparency, mechanical tests) to optimize their properties. The formulation with the best UV-blocking properties and less toxicity effect tested using MRC5 cells was chosen as an outer layer in double-layer films production. Water contact angle measurements confirmed that hydrophilic - hydrophobic double layer film was obtained with the improved mechanical properties in comparison to the native BNC. Migration test indicated release of PG in all tested media as a consequence of bilayer formulation, while the PG release from PHO in 10 % ethanol was not detected. All findings from the study suggested this activated, UV-blocking material as a candidate with excellent potential in packaging industry.
Collapse
Affiliation(s)
- Ivana Malagurski
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Tatjana Ilic-Tomic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Ana Salevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Marijana Ponjavic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Microbiology and Plant Biology Department, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| |
Collapse
|
2
|
Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi-Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol 2024; 282:136689. [PMID: 39447779 DOI: 10.1016/j.ijbiomac.2024.136689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cartilage and bone are crucial tissues causing disability in the elderly population, often requiring prolonged treatment and surgical intervention due to limited regenerative capacity. Injectable hydrogels that closely mimic the extracellular matrix (ECM) of native hard tissue have attracted attention due to their minimally invasive application and ability to conform to irregular defect sites. These hydrogels facilitate key biological processes such as cell migration, chondrogenesis in cartilage repair, osteoinduction, angiogenesis, osteoconduction, and mineralization in bone repair. This review analyzes in-vitro and in-vivo biomedical databases over the past decade to identify advancements in hydrogel formulations, crosslinking mechanisms, and biomaterial selection for cartilage and bone tissue engineering. The review emphasizes the effectiveness of injectable hydrogels as carriers for cells, growth factors, and drugs, offering additional therapeutic benefits. The relevance of these findings is discussed in the context of their potential to serve as a robust alternative to current surgical and non-surgical treatments. This review also examines the advantages of injectable hydrogels, such as ease of administration, reduced patient recovery time, and enhanced bioactivity, thereby emphasizing their potential in clinical applications for cartilage and bone regeneration with emphasis on addressing the shortcomings of current treatments.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Mohammadhossein Rezaei Demneh
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Shayesteh Hafezi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Stevanović M, Filipović N. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years. Pharmaceutics 2024; 16:670. [PMID: 38794332 PMCID: PMC11125366 DOI: 10.3390/pharmaceutics16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | | |
Collapse
|
4
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
5
|
Koller M. Advances in Polyhydroxyalkanoate (PHA) Production, Volume 3. Bioengineering (Basel) 2022; 9:bioengineering9070328. [PMID: 35877379 PMCID: PMC9312071 DOI: 10.3390/bioengineering9070328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 01/19/2023] Open
Abstract
Steadily increasing R&D activities in the field of microbial polyhydroxyalkanoate (PHA) biopolyesters are committed to growing global threats from climate change, aggravating plastic pollution, and the shortage of fossil resources. These prevailing issues paved the way to launch the third Special Issue of Bioengineering dedicated to future-oriented biomaterials, characterized by their versatile plastic-like properties. Fifteen individual contributions to the Special Issue, written by renowned groups of researchers from all over the world, perfectly mirror the current research directions in the PHA sector: inexpensive feedstock like carbon-rich waste from agriculture, mitigation of CO2 for PHA biosynthesis by cyanobacteria or wild type and engineered “knallgas” bacteria, powerful extremophilic PHA production strains, novel tools for rapid in situ determination of PHA in photobioreactors, modelling of the dynamics of PHA production by mixed microbial cultures from inexpensive raw materials, enhanced bioreactor design for high-throughput PHA production by sophisticated cell retention systems, sustainable and efficient PHA recovery from biomass assisted by supercritical water, enhanced processing of PHA by application of novel antioxidant additives, and the development of compatible biopolymer blends. Moreover, elastomeric medium chain length PHA (mcl-PHA) are covered in-depth, inter alia, by introduction of a novel class of bioactive mcl-PHA-based networks, in addition to the first presentation of the new rubber-like polythioester poly(3-mercapto-2-methylpropionate). Finally, the present Special Issue is concluded by a critical essay on past, ongoing, and announced global endeavors for PHA commercialization.
Collapse
Affiliation(s)
- Martin Koller
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria; ; Tel.: +43-316-380-5463
- ARENA—Arbeitsgemeinschaft für Ressourcenschonende und Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| |
Collapse
|