1
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Raoufinia R, Rahimi HR, Keyhanvar N, Moghbeli M, Abdyazdani N, Rostami M, Naghipoor K, Forouzanfar F, Foroudi S, Saburi E. Advances in Treatments for Epidermolysis Bullosa (EB): Emphasis on Stem Cell-Based Therapy. Stem Cell Rev Rep 2024; 20:1200-1212. [PMID: 38430362 DOI: 10.1007/s12015-024-10697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Epidermolysis bullosa (EB) is a rare genetic dermatosis characterized by skin fragility and blister formation. With a wide phenotypic spectrum and potential extracutaneous manifestations, EB poses significant morbidity and mortality risks. Currently classified into four main subtypes based on the level of skin cleavage, EB is caused by genetic mutations affecting proteins crucial for maintaining skin integrity. The management of EB primarily focuses on preventing complications and treating symptoms through wound care, pain management, and other supportive measures. However, recent advancements in the fields of stem cell therapy, tissue engineering, and gene therapy have shown promise as potential treatments for EB. Stem cells capable of differentiating into skin cells, have demonstrated positive outcomes in preclinical and early clinical trials by promoting wound healing and reducing inflammation. Gene therapy, on the other hand, aims to correct the underlying genetic defects responsible for EB by introducing functional copies of mutated genes or modifying existing genes to restore protein function. Particularly for severe subtypes like Recessive Dystrophic Epidermolysis Bullosa (RDEB), gene therapy holds significant potential. This review aims to evaluate the role of new therapeutic approaches in the treatment of EB. The review includes findings from studies conducted on humans. While early studies and clinical trials have shown promising results, further research and trials are necessary to establish the safety and efficacy of these innovative approaches for EB treatment.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of medicine, Mashhad University of medical sciences, Mashhad, Iran
| | - Karim Naghipoor
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Foroudi
- Department of Biology, Faculty of Sciences, University of Ferdowsi, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Sompunga P, Rodprasert W, Srisuwatanasagul S, Techangamsuwan S, Jirajessada S, Hanchaina R, Kangsamaksin T, Yodmuang S, Sawangmake C. Preparation of Decellularized Tissue as Dual Cell Carrier Systems: A Step Towards Facilitating Re-epithelization and Cell Encapsulation for Tracheal Reconstruction. Ann Biomed Eng 2024; 52:1222-1239. [PMID: 38353908 DOI: 10.1007/s10439-024-03448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 04/06/2024]
Abstract
Surgical treatment of tracheal diseases, trauma, and congenital stenosis has shown success through tracheal reconstruction coupled with palliative care. However, challenges in surgical-based tracheal repairs have prompted the exploration of alternative approaches for tracheal replacement. Tissue-based treatments, involving the cultivation of patient cells on a network of extracellular matrix (ECM) from donor tissue, hold promise for restoring tracheal structure and function without eliciting an immune reaction. In this study, we utilized decellularized canine tracheas as tissue models to develop two types of cell carriers: a decellularized scaffold and a hydrogel. Our hypothesis posits that both carriers, containing essential biochemical niches provided by ECM components, facilitate cell attachment without inducing cytotoxicity. Canine tracheas underwent vacuum-assisted decellularization (VAD), and the ECM-rich hydrogel was prepared through peptic digestion of the decellularized trachea. The decellularized canine trachea exhibited a significant reduction in DNA content and major histocompatibility complex class II, while preserving crucial ECM components such as collagen, glycosaminoglycan, laminin, and fibronectin. Scanning electron microscope and fluorescent microscope images revealed a fibrous ECM network on the luminal side of the cell-free trachea, supporting epithelial cell attachment. Moreover, the ECM-rich hydrogel exhibited excellent viability for human mesenchymal stem cells encapsulated for 3 days, indicating the potential of cell-laden hydrogel in promoting the development of cartilage rings of the trachea. This study underscores the versatility of the trachea in producing two distinct cell carriers-decellularized scaffold and hydrogel-both containing the native biochemical niche essential for tracheal tissue engineering applications.
Collapse
Affiliation(s)
- Pensuda Sompunga
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sirinee Jirajessada
- Biology Program, Faculty of Science, Buriram Rajabhat University, Muang, Buriram, 31000, Thailand
| | - Rattanavinan Hanchaina
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thaned Kangsamaksin
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Ananda Mahidol Building, 1873 Rama 4 Rd, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence in Biomaterial Engineering for Medical and Health, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Clinical Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok, 10330, Thailand.
- Avatar Biotech for Oral Health & Healthy Longevity Research Unit, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Scodellaro C, Pina RR, Ferreira FC, Sanjuan-Alberte P, Fernandes TG. Unlocking the Potential of Stem Cell Microenvironments In Vitro. Bioengineering (Basel) 2024; 11:289. [PMID: 38534563 DOI: 10.3390/bioengineering11030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The field of regenerative medicine has recently witnessed groundbreaking advancements that hold immense promise for treating a wide range of diseases and injuries. At the forefront of this revolutionary progress are stem cells. Stem cells typically reside in specialized environments in vivo, known as microenvironments or niches, which play critical roles in regulating stem cell behavior and determining their fate. Therefore, understanding the complex microenvironments that surround stem cells is crucial for advancing treatment options in regenerative medicine and tissue engineering applications. Several research articles have made significant contributions to this field by exploring the interactions between stem cells and their surrounding niches, investigating the influence of biomechanical and biochemical cues, and developing innovative strategies for tissue regeneration. This review highlights the key findings and contributions of these studies, shedding light on the diverse applications that may arise from the understanding of stem cell microenvironments, thus harnessing the power of these microenvironments to transform the landscape of medicine and offer new avenues for regenerative therapies.
Collapse
Affiliation(s)
- Chiara Scodellaro
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Raquel R Pina
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
5
|
Polisetti N, Martin G, Ulrich E, Glegola M, Schlötzer-Schrehardt U, Schlunck G, Reinhard T. Influence of Organ Culture on the Characteristics of the Human Limbal Stem Cell Niche. Int J Mol Sci 2023; 24:16856. [PMID: 38069177 PMCID: PMC10706739 DOI: 10.3390/ijms242316856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Organ culture storage techniques for corneoscleral limbal (CSL) tissue have improved the quality of corneas for transplantation and allow for longer storage times. Cultured limbal tissue has been used for stem cell transplantation to treat limbal stem cell deficiency (LSCD) as well as for research purposes to assess homeostasis mechanisms in the limbal stem cell niche. However, the effects of organ culture storage conditions on the quality of limbal niche components are less well described. Therefore, in this study, the morphological and immunohistochemical characteristics of organ-cultured limbal tissue are investigated and compared to fresh limbal tissues by means of light and electron microscopy. Organ-cultured limbal tissues showed signs of deterioration, such as edema, less pronounced basement membranes, and loss of the most superficial layers of the epithelium. In comparison to the fresh limbal epithelium, organ-cultured limbal epithelium showed signs of ongoing proliferative activity (more Ki-67+ cells) and exhibited an altered limbal epithelial phenotype with a loss of N-cadherin and desmoglein expression as well as a lack of precise staining patterns for cytokeratin ((CK)14, CK17/19, CK15). The analyzed extracellular matrix composition was mainly intact (collagen IV, fibronectin, laminin chains) except for Tenascin-C, whose expression was increased in organ-cultured limbal tissue. Nonetheless, the expression patterns of cell-matrix adhesion proteins varied in organ-cultured limbal tissue compared to fresh limbal tissue. A decrease in the number of melanocytes (Melan-A+ cells) and Langerhans cells (HLA-DR+, CD1a+, CD18+) was observed in the organ-cultured limbal tissue. The organ culture-induced alterations of the limbal epithelial stem cell niche might hamper its use in the treatment of LSCD as well as in research studies. In contrast, reduced numbers of donor-derived Langerhans cells seem associated with better clinical outcomes. However, there is a need to consider the preferential use of fresh CSL for limbal transplants and to look at ways of improving the limbal stem cell properties of stored CSL tissue.
Collapse
Affiliation(s)
- Naresh Polisetti
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Eva Ulrich
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Mateusz Glegola
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Günther Schlunck
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
6
|
李 驰, 樊 瑜, 郑 丽. [Differentiation of stem cells regulated by biophysical cues]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:609-616. [PMID: 37666749 PMCID: PMC10477397 DOI: 10.7507/1001-5515.202208002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/03/2022] [Indexed: 09/06/2023]
Abstract
Stem cells have been regarded with promising application potential in tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities. However, their fate is relied on their local microenvironment, or niche. Recent studied have demonstrated that biophysical factors, defined as physical microenvironment in which stem cells located play a vital role in regulating stem cell committed differentiation. In vitro, synthetic physical microenvironments can be used to precisely control a variety of biophysical properties. On this basis, the effect of biophysical properties such as matrix stiffness, matrix topography and mechanical force on the committed differentiation of stem cells was further investigated. This paper summarizes the approach of mechanical models of artificial physical microenvironment and reviews the effects of different biophysical characteristics on stem cell differentiation, in order to provide reference for future research and development in related fields.
Collapse
Affiliation(s)
- 驰宇 李
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - 瑜波 樊
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - 丽沙 郑
- 北京航空航天大学 生物与医学工程学院 北京市生物医学工程高精尖创新中心 生物力学与力生物学教育部重点实验室(北京 100083)Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| |
Collapse
|
7
|
Qian J, Wang Y, Li X, Lü J. Hydrogel microenvironment contributes to chemical-induced differentiation of mesenchymal stem cells: single-cell infrared microspectroscopy characterization. Anal Bioanal Chem 2023:10.1007/s00216-023-04746-z. [PMID: 37191714 DOI: 10.1007/s00216-023-04746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Stem cell microenvironment plays vital roles in directing cell proliferation and differentiation. Due to the tiny biochemical changes in the early stage of stem cell development, technical challenges to characterize the potential effects of environmental signals remain. In this work, we have introduced synchrotron radiation-based Fourier transform infrared microspectroscopy to evaluate the synergistic effects of physical and chemical factors on stem cell differentiation at the single-cell level. By using principal component analysis and cell-cell Euclidean distance calculation, the phenotypic heterogeneity changes during stem cell osteogenesis induced by lithium chloride or Wnt5a protein loaded in the polyvinyl alcohol (PVA) hydrogel were characterized in detail. The results demonstrated that PVA hydrogel could lead to the distinct effects between low-concentration lithium and wnt5a on human mesenchymal stem cells, suggesting a vital role of niche signals in Wnt pathway. These findings highlight the importance of microenvironment to the chemical-induced effects on stem cell differentiation and also provide a label-free, noninvasive method to sensitively identify the niche function in stem cell biology.
Collapse
Affiliation(s)
- Jiang Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Yadi Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xueling Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
8
|
Shi K, Liang C, Huang X, Wang S, Chen J, Cheng F, Wang C, Ying L, Pan Z, Zhang Y, Shu J, Yang B, Wang J, Xia K, Zhou X, Li H, Li F, Tao Y, Chen Q. Collagen Niches Affect Direct Transcriptional Conversion toward Human Nucleus Pulposus Cells via Actomyosin Contractility. Adv Healthc Mater 2023; 12:e2201824. [PMID: 36165230 DOI: 10.1002/adhm.202201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Indexed: 02/03/2023]
Abstract
Cellular niches play fundamental roles in regulating cellular behaviors. However, the effect of niches on direct converted cells remains unexplored. In the present study, the specific combination of transcription factors is first identified to directly acquire induced nucleus pulposus-like cells (iNPLCs). Next, tunable physical properties of collagen niches are fabricated based on various crosslinking degrees. Collagen niches significantly affect actomyosin cytoskeleton and then influence the maturation of iNPLCs. Using gain- and loss of function approaches, the appropriate physical states of collagen niches are found to significantly enhance the maturation of iNPLCs through actomyosin contractility. Moreover, in a rat model of degenerative disc diseases, iNPLCs with collagen niches are transplanted into the lesion to achieve significant improvements. As a result, overexpression of transcription factors in human dermal fibroblasts are efficiently converted into iNPLCs and the optimal collagen niches affect cellular cytoskeleton and then facilitate iNPLCs maturation toward human nucleus pulposus cells. These findings encourage more in-depth studies toward the interactions of niches and direct conversion, which would contribute to the development of direct conversion.
Collapse
Affiliation(s)
- Kesi Shi
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Shaoke Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Feng Cheng
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| | - Liwei Ying
- Department of Orthopedics Surgery, Taizhou Hospital Affiliated of Wenzhou Medical University, Linhai, Zhejiang Province, 317000, P. R. China
| | - Zhaoqi Pan
- The School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| | - Yuang Zhang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jiawei Shu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Biao Yang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Kaishun Xia
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Hao Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| |
Collapse
|
9
|
Design and Fabrication of Artificial Stem Cell Niches. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120813. [PMID: 36551019 PMCID: PMC9774449 DOI: 10.3390/bioengineering9120813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The term "cellular microenvironment" is a generic expression used to describe the complex collection of stimuli that contribute to cell and tissue functions [...].
Collapse
|
10
|
Mallis P. Design and Fabrication of Artificial Stem Cell Microenvironments. Bioengineering (Basel) 2022; 9:756. [PMID: 36550962 PMCID: PMC9774650 DOI: 10.3390/bioengineering9120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Major key features of stem cells' functions are self-renewal and their capacity for differentiation, allowing for maintain a proper stem cell reservoir as well as producing lineage-committed cells [...].
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; or
- Immunology Department & National Tissue Typing Center, General Hospital of Athens “Gennimatas”, 154 Mesogeion Ave., 115 27 Athens, Greece
| |
Collapse
|
11
|
Gautier B, Meneux L, Feret N, Audrain C, Hudecek L, Kuony A, Bourdon A, Le Guiner C, Blouin V, Delettre C, Michon F. AAV2/9-mediated gene transfer into murine lacrimal gland leads to a long-term targeted tear film modification. Mol Ther Methods Clin Dev 2022; 27:1-16. [PMID: 36156877 PMCID: PMC9463184 DOI: 10.1016/j.omtm.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
Corneal blindness is the fourth leading cause of blindness worldwide. Since corneal epithelium is constantly renewed, non-integrative gene transfer cannot be used to treat corneal diseases. In many of these diseases, the tear film is defective. Tears are a complex biological fluid secreted by the lacrimal apparatus. Their composition is modulated according to the context. After a corneal wound, the lacrimal gland secretes reflex tears, which contain growth factors supporting the wound healing process. In various pathological contexts, the tear composition can support neither corneal homeostasis nor wound healing. Here, we propose to use the lacrimal gland as bioreactor to produce and secrete specific factors supporting corneal physiology. In this study, we use an AAV2/9-mediated gene transfer to supplement the tear film. First, we demonstrate that a single injection of AAV2/9 is sufficient to transduce all epithelial cell types of the lacrimal gland efficiently and widely. Second, we detect no adverse effect after AAV2/9-mediated nerve growth factor expression in the lacrimal gland. Only a transitory increase in tear flow is measured. Remarkably, AAV2/9 induces an important and long-lasting secretion of this growth factor in the tear film. Altogether, our findings provide a new clinically applicable approach to tackle corneal blindness.
Collapse
Affiliation(s)
- Benoit Gautier
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Corresponding author Benoit Gautier, Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| | - Léna Meneux
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Nadège Feret
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Christine Audrain
- TarGeT, Nantes University, INSERM UMR 1089, CHU Nantes, Nantes, France
| | - Laetitia Hudecek
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- MRI, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alison Kuony
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Cell Adhesion and Mechanics Lab, Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Audrey Bourdon
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | - Véronique Blouin
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Cécile Delettre
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Frédéric Michon
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Corresponding author Frédéric Michon, Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
12
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
13
|
P-Cadherin Is Expressed by Epithelial Progenitor Cells and Melanocytes in the Human Corneal Limbus. Cells 2022; 11:cells11121975. [PMID: 35741104 PMCID: PMC9221557 DOI: 10.3390/cells11121975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Interactions between limbal epithelial progenitor cells (LEPC) and surrounding niche cells, which include limbal mesenchymal stromal cells (LMSC) and melanocytes (LM), are essential for the maintenance of the limbal stem cell niche required for a transparent corneal surface. P-cadherin (P-cad) is a critical stem cell niche adhesion molecule at various epithelial stem cell niches; however, conflicting observations were reported on the presence of P-cad in the limbal region. To explore this issue, we assessed the location and phenotype of P-cad+ cells by confocal microscopy of human corneoscleral tissue. In subsequent fluorescence-activated cell sorting (FACS) experiments, we used antibodies against P-cad along with CD90 and CD117 for the enrichment of LEPC, LMSC and LM, respectively. The sorted cells were characterized by immunophenotyping and the repopulation of decellularized limbal scaffolds was evaluated. Our findings demonstrate that P-cad is expressed by epithelial progenitor cells as well as melanocytes in the human limbal epithelial stem cell niche. The modified flow sorting addressing P-cad as well as CD90 and CD117 yielded enriched LEPC (CD90−CD117−P-cad+) and pure populations of LMSC (CD90+CD117−P-cad−) and LM (CD90−CD117+P-cad+). The enriched LEPC showed the expression of epithelial progenitor markers and better colony-forming ability than their P-cad− counterparts. The cultured LEPC and LM exhibited P-cad expression at intercellular junctions and successfully repopulated decellularized limbal scaffolds. These data suggest that P-cad is a critical cell–cell adhesion molecule, connecting LEPC and LM, which may play an important role in the long-term maintenance of LEPC at the limbal stem cell niche; moreover, these findings led to further improvement of cell enrichment protocols to enhance the yield of LEPC.
Collapse
|
14
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|
15
|
Liu B, Tao C, Wu Z, Yao H, Wang DA. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J Mater Chem B 2022; 10:1734-1753. [DOI: 10.1039/d1tb02706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haematopoietic stem cells are the basis for building and maintaining lifelong haematopoietic mechanisms and important resources for the treatment of blood disorders. Haematopoietic niches are microenvironment in the body where...
Collapse
|
16
|
Robertson SYT, Roberts JS, Deng SX. Regulation of Limbal Epithelial Stem Cells: Importance of the Niche. Int J Mol Sci 2021; 22:11975. [PMID: 34769405 PMCID: PMC8584795 DOI: 10.3390/ijms222111975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.
Collapse
Affiliation(s)
| | | | - Sophie X. Deng
- Jules Stein Eye Institute, University of California, Los Angeles, CA 94143, USA; (S.Y.T.R.); (J.S.R.)
| |
Collapse
|
17
|
A Decellularized Human Limbal Scaffold for Limbal Stem Cell Niche Reconstruction. Int J Mol Sci 2021; 22:ijms221810067. [PMID: 34576227 PMCID: PMC8471675 DOI: 10.3390/ijms221810067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
The transplantation of ex vivo expanded limbal epithelial progenitor cells (LEPCs) on amniotic membrane or fibrin gel is an established therapeutic strategy to regenerate the damaged corneal surface in patients with limbal stem cell deficiency (LSCD), but the long-term success rate is restricted. A scaffold with niche-specific structure and extracellular matrix (ECM) composition might have the advantage to improve long-term clinical outcomes, in particular for patients with severe damage or complete loss of the limbal niche tissue structure. Therefore, we evaluated the decellularized human limbus (DHL) as a biomimetic scaffold for the transplantation of LEPCs. Corneoscleral tissue was decellularized by sodium deoxycholate and deoxyribonuclease I in the presence or absence of dextran. We evaluated the efficiency of decellularization and its effects on the ultrastructure and ECM composition of the human corneal limbus. The recellularization of these scaffolds was studied by plating cultured LEPCs and limbal melanocytes (LMs) or by allowing cells to migrate from the host tissue following a lamellar transplantation ex vivo. Our decellularization protocol rapidly and effectively removed cellular and nuclear material while preserving the native ECM composition. In vitro recellularization by LEPCs and LMs demonstrated the good biocompatibility of the DHL and intrastromal invasion of LEPCs. Ex vivo transplantation of DHL revealed complete epithelialization as well as melanocytic and stromal repopulation from the host tissue. Thus, the generated DHL scaffold could be a promising biological material as a carrier for the transplantation of LEPCs to treat LSCD.
Collapse
|