1
|
Puleo S, Pasta S, Scardulla F, D’Acquisto L. Fluid-Solid Interaction Analysis for Developing In-Situ Strain and Flow Sensors for Prosthetic Valve Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:5040. [PMID: 39124087 PMCID: PMC11314931 DOI: 10.3390/s24155040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Transcatheter aortic valve implantation (TAVI) was initially developed for adult patients, but there is a growing interest to expand this procedure to younger individuals with longer life expectancies. However, the gradual degradation of biological valve leaflets in transcatheter heart valves (THV) presents significant challenges for this extension. This study aimed to establish a multiphysics computational framework to analyze structural and flow measurements of TAVI and evaluate the integration of optical fiber and photoplethysmography (PPG) sensors for monitoring valve function. A two-way fluid-solid interaction (FSI) analysis was performed on an idealized aortic vessel before and after the virtual deployment of the SAPIEN 3 Ultra (S3) THV. Subsequently, an analytical analysis was conducted to estimate the PPG signal using computational flow predictions and to analyze the effect of different pressure gradients and distances between PPG sensors. Circumferential strain estimates from the embedded optical fiber in the FSI model were highest in the sinus of Valsalva; however, the optimal fiber positioning was found to be distal to the sino-tubular junction to minimize bending effects. The findings also demonstrated that positioning PPG sensors both upstream and downstream of the bioprosthesis can be used to effectively assess the pressure gradient across the valve. We concluded that computational modeling allows sensor design to quantify vessel wall strain and pressure gradients across valve leaflets, with the ultimate goal of developing low-cost monitoring systems for detecting valve deterioration.
Collapse
Affiliation(s)
- Silvia Puleo
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.P.); (S.P.); (F.S.)
| | - Salvatore Pasta
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.P.); (S.P.); (F.S.)
- Department of Research, Scientific Institute of Hospitalization and Care-Mediterranean Institute for Transplantation and Highly Specialized Therapies (IRCCS-ISMETT), Via Tricomi, 5, 90127 Palermo, Italy
| | - Francesco Scardulla
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.P.); (S.P.); (F.S.)
| | - Leonardo D’Acquisto
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (S.P.); (S.P.); (F.S.)
| |
Collapse
|
2
|
Baylous K, Helbock R, Kovarovic B, Anam S, Slepian M, Bluestein D. In silico fatigue optimization of TAVR stent designs with physiological motion in a beating heart model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107886. [PMID: 37925854 DOI: 10.1016/j.cmpb.2023.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND OBJECTIVE The rapid expansion of TAVR to younger, low-risk patients raises concerns regarding device durability. Necessarily, extended stent lifetime will become more critical for new generation devices. In vitro methods commonly used for TAVR stent fatigue testing exclude the effects of the beating heart. We present a more realistic in silico stent fatigue analysis utilizing a beating heart model in which TAVR stents experience complex, nonuniform dynamic loading. METHODS Virtual TAVR deployments were simulated in the SIMULIA Living Heart Human Model of a beating heart using stent models of the self-expandable nitinol 26-mm CoreValve and Evolut R devices, and a 27-mm PolyV-2. Stent deformation was monitored over three cardiac cycles, and fatigue resistance was evaluated for the nitinol stents using finite element analysis via ABAQUS/Explicit. The average strain and strain amplitude of each stent element were tracked, and established thresholds were applied to determine potential fatigue failure. Fatigue performance of control stents was compared to parametrically modified models with a 20% increase or decrease in strut width. RESULTS Stents with reduced strut width applied lower radial force against the contracting myocardium of the beating heart, resulting in larger displacements and higher strain values. Formulas relating in vivo strain to stent design do not account for this. In all models, there were elements in which strains exceeded fatigue failure. The PolyV-2 stent had far fewer failing elements since its struts were optimized to reduce the strain in stent joints, achieving better fatigue resistance in the stent crown and waist elements. Different stent sections showed markedly different fatigue resistance due to the varying loading conditions. CONCLUSIONS Our analysis indicates that previous studies underestimate strain amplitudes that may cause stent failure. This study demonstrates the utility of advanced in silico analysis of devices deployed within a beating heart that mimics in vivo loading, offering a cost-effective alternative to human or animal trials and establishing a platform to assess the impact of device design on device durability. The limited fatigue life of TAVR stents indicated here highlights a clinical complication that may eventually develop as younger, lower-risk TAVR patients, age.
Collapse
Affiliation(s)
- Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA
| | - Marvin Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ 85721, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794-8084, USA.
| |
Collapse
|
3
|
Geronzi L, Bel-Brunon A, Martinez A, Rochette M, Sensale M, Bouchot O, Lalande A, Lin S, Valentini PP, Biancolini ME. Calibration of the Mechanical Boundary Conditions for a Patient-Specific Thoracic Aorta Model Including the Heart Motion Effect. IEEE Trans Biomed Eng 2023; 70:3248-3259. [PMID: 37390004 DOI: 10.1109/tbme.2023.3287680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
OBJECTIVE We propose a procedure for calibrating 4 parameters governing the mechanical boundary conditions (BCs) of a thoracic aorta (TA) model derived from one patient with ascending aortic aneurysm. The BCs reproduce the visco-elastic structural support provided by the soft tissue and the spine and allow for the inclusion of the heart motion effect. METHODS We first segment the TA from magnetic resonance imaging (MRI) angiography and derive the heart motion by tracking the aortic annulus from cine-MRI. A rigid-wall fluid-dynamic simulation is performed to derive the time-varying wall pressure field. We build the finite element model considering patient-specific material properties and imposing the derived pressure field and the motion at the annulus boundary. The calibration, which involves the zero-pressure state computation, is based on purely structural simulations. After obtaining the vessel boundaries from the cine-MRI sequences, an iterative procedure is performed to minimize the distance between them and the corresponding boundaries derived from the deformed structural model. A strongly-coupled fluid-structure interaction (FSI) analysis is finally performed with the tuned parameters and compared to the purely structural simulation. RESULTS AND CONCLUSION The calibration with structural simulations allows to reduce maximum and mean distances between image-derived and simulation-derived boundaries from 8.64 mm to 6.37 mm and from 2.24 mm to 1.83 mm, respectively. The maximum root mean square error between the deformed structural and FSI surface meshes is 0.19 mm. This procedure may prove crucial for increasing the model fidelity in replicating the real aortic root kinematics.
Collapse
|
4
|
Salmasi MY, Pirola S, Asimakopoulos G, Nienaber C, Athanasiou T. Risk prediction for thoracic aortic dissection: Is it time to go with the flow? J Thorac Cardiovasc Surg 2023; 166:1034-1042. [PMID: 35672182 DOI: 10.1016/j.jtcvs.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Affiliation(s)
- M Yousuf Salmasi
- Department of Surgery, Imperial College London, London, United Kingdom.
| | - Selene Pirola
- BHF Centre of Research Excellence, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - George Asimakopoulos
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Christoph Nienaber
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Kim T, Tjahjadi NS, He X, van Herwaarden JA, Patel HJ, Burris NS, Figueroa CA. Three-Dimensional Characterization of Aortic Root Motion by Vascular Deformation Mapping. J Clin Med 2023; 12:4471. [PMID: 37445507 DOI: 10.3390/jcm12134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
The aorta is in constant motion due to the combination of cyclic loading and unloading with its mechanical coupling to the contractile left ventricle (LV) myocardium. This aortic root motion has been proposed as a marker for aortic disease progression. Aortic root motion extraction techniques have been mostly based on 2D image analysis and have thus lacked a rigorous description of the different components of aortic root motion (e.g., axial versus in-plane). In this study, we utilized a novel technique termed vascular deformation mapping (VDM(D)) to extract 3D aortic root motion from dynamic computed tomography angiography images. Aortic root displacement (axial and in-plane), area ratio and distensibility, axial tilt, aortic rotation, and LV/Ao angles were extracted and compared for four different subject groups: non-aneurysmal, TAA, Marfan, and repair. The repair group showed smaller aortic root displacement, aortic rotation, and distensibility than the other groups. The repair group was also the only group that showed a larger relative in-plane displacement than relative axial displacement. The Marfan group showed the largest heterogeneity in aortic root displacement, distensibility, and age. The non-aneurysmal group showed a negative correlation between age and distensibility, consistent with previous studies. Our results revealed a strong positive correlation between LV/Ao angle and relative axial displacement and a strong negative correlation between LV/Ao angle and relative in-plane displacement. VDM(D)-derived 3D aortic root motion can be used in future studies to define improved boundary conditions for aortic wall stress analysis.
Collapse
Affiliation(s)
- Taeouk Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nic S Tjahjadi
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuehuan He
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - J A van Herwaarden
- Department of Vascular Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas S Burris
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - C Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Weissmann J, Charles CJ, Richards AM, Yap CH, Marom G. Material property alterations for phenotypes of heart failure with preserved ejection fraction: A numerical study of subject-specific porcine models. Front Bioeng Biotechnol 2022; 10:1032034. [PMID: 36312535 PMCID: PMC9614036 DOI: 10.3389/fbioe.2022.1032034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
A substantial proportion of heart failure patients have a preserved left ventricular (LV) ejection fraction (HFpEF). This condition carries a high burden of morbidity and mortality and has limited therapeutic options. left ventricular pressure overload leads to an increase in myocardial collagen content, causing left ventricular stiffening that contributes to the development of heart failure patients have a preserved left ventricular ejection fraction. Although several heart failure patients have a preserved left ventricular ejection fraction models have been developed in recent years to aid the investigation of mechanical alterations, none has investigated different phenotypes of the disease and evaluated the alterations in material properties. In this study, two similar healthy swine were subjected to progressive and prolonged pressure overload to induce diastolic heart failure characteristics, providing a preclinical model of heart failure patients have a preserved left ventricular ejection fraction. Cardiac magnetic resonance imaging (cMRI) scans and intracardiac pressures were recorded before and after induction. In both healthy and disease states, a corresponding finite element (FE) cardiac model was developed via mesh morphing of the Living Heart Porcine model. The material properties were derived by calibrating to its passive and active behavior. The change in the passive behavior was predominantly isotropic when comparing the geometries before and after induction. Myocardial thickening allowed for a steady transition in the passive properties while maintaining tissue incompressibility. This study highlights the importance of hypertrophy as an initial compensatory response and might also pave the way for assessing disease severity.
Collapse
Affiliation(s)
- Jonathan Weissmann
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Christopher J. Charles
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|