1
|
Sravan JS, Matsakas L, Sarkar O. Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering (Basel) 2024; 11:281. [PMID: 38534555 DOI: 10.3390/bioengineering11030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Advancements in biological wastewater treatment with sustainable and circularity approaches have a wide scope of application. Biological wastewater treatment is widely used to remove/recover organic pollutants and nutrients from a diverse wastewater spectrum. However, conventional biological processes face challenges, such as low efficiency, high energy consumption, and the generation of excess sludge. To overcome these limitations, integrated strategies that combine biological treatment with other physical, chemical, or biological methods have been developed and applied in recent years. This review emphasizes the recent advances in integrated strategies for biological wastewater treatment, focusing on their mechanisms, benefits, challenges, and prospects. The review also discusses the potential applications of integrated strategies for diverse wastewater treatment towards green energy and resource recovery, along with low-carbon fuel production. Biological treatment methods, viz., bioremediation, electro-coagulation, electro-flocculation, electro-Fenton, advanced oxidation, electro-oxidation, bioelectrochemical systems, and photo-remediation, are summarized with respect to non-genetically modified metabolic reactions. Different conducting materials (CMs) play a significant role in mass/charge transfer metabolic processes and aid in enhancing fermentation rates. Carbon, metal, and nano-based CMs hybridization in different processes provide favorable conditions to the fermentative biocatalyst and trigger their activity towards overcoming the limitations of the conventional process. The emerging field of nanotechnology provides novel additional opportunities to surmount the constraints of conventional process for enhanced waste remediation and resource valorization. Holistically, integrated strategies are promising alternatives for improving the efficiency and effectiveness of biological wastewater treatment while also contributing to the circular economy and environmental protection.
Collapse
Affiliation(s)
- J Shanthi Sravan
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
2
|
Madondo NI, Rathilal S, Bakare BF, Tetteh EK. Effect of Electrode Spacing on the Performance of a Membrane-Less Microbial Fuel Cell with Magnetite as an Additive. Molecules 2023; 28:molecules28062853. [PMID: 36985825 PMCID: PMC10058918 DOI: 10.3390/molecules28062853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
A microbial fuel cell (MFC) is a bioelectrochemical system that can be employed for the generation of electrical energy under microbial activity during wastewater treatment practices. The optimization of electrode spacing is perhaps key to enhancing the performance of an MFC. In this study, electrode spacing was evaluated to determine its effect on the performance of MFCs. The experimental work was conducted utilizing batch digesters with electrode spacings of 2.0 cm, 4.0 cm, 6.0 cm, and 8.0 cm. The results demonstrate that the performance of the MFC improved when the electrode spacing increased from 2.0 to 6.0 cm. However, the efficiency decreased after 6.0 cm. The digester with an electrode spacing of 6.0 cm enhanced the efficiency of the MFC, which led to smaller internal resistance and greater biogas production of 662.4 mL/g VSfed. The electrochemical efficiency analysis demonstrated higher coulombic efficiency (68.7%) and electrical conductivity (177.9 µS/cm) for the 6.0 cm, which was evident from the enrichment of electrochemically active microorganisms. With regards to toxic contaminant removal, the same digester also performed well, revealing removals of over 83% for chemical oxygen demand (COD), total solids (TS), total suspended solids (TSS), and volatile solids (VS). Therefore, these results indicate that electrode spacing is a factor affecting the performance of an MFC, with an electrode spacing of 6.0 cm revealing the greatest potential to maximize biogas generation and the degradability of wastewater biochemical matter.
Collapse
Affiliation(s)
- Nhlanganiso Ivan Madondo
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Sudesh Rathilal
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Babatunde Femi Bakare
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Faculty of Engineering, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa
| | - Emmanuel Kweinor Tetteh
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| |
Collapse
|
3
|
Application of Magnetite-Nanoparticles and Microbial Fuel Cell on Anaerobic Digestion: Influence of External Resistance. Microorganisms 2023; 11:microorganisms11030643. [PMID: 36985216 PMCID: PMC10055030 DOI: 10.3390/microorganisms11030643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In this paper, the application of magnetite-nanoparticles and a microbial fuel cell (MFC) was studied on the anaerobic digestion (AD) of sewage sludge. The experimental set-up included six 1 L biochemical methane potential (BMP) tests with different external resistors: (a) 100 Ω, (b) 300 Ω, (c) 500 Ω, (d) 800 Ω, (e) 1000 Ω, and (f) a control with no external resistor. The BMP tests were carried out using digesters with a working volume of 0.8 L fed with 0.5 L substrate, 0.3 L inoculum, and 0.53 g magnetite-nanoparticles. The results suggested that the ultimate biogas generation reached 692.7 mL/g VSfed in the 500 Ω digester, which was substantially greater than the 102.6 mL/g VSfed of the control. The electrochemical efficiency analysis also demonstrated higher coulombic efficiency (81.2%) and maximum power density (30.17 mW/ m2) for the 500 Ω digester. The digester also revealed a higher maximum voltage generation of 0.431 V, which was approximately 12.7 times the 0.034 V of the lowest-performing MFC (100 Ω digester). In terms of contaminants removed, the best-performing digester was the digester with 500 Ω, which reduced contaminants by more than 89% on COD, TS, VS, TSS and color. In terms of cost-benefit analysis, this digester produced the highest annual energy profit (48.22 ZAR/kWh or 3.45 USD/kWh). This infers the application of magnetite-nanoparticles and MFC on the AD of sewage sludge is very promising for biogas production. The digester with an external resistor of 500 Ω showed a high potential for use in bioelectrochemical biogas generation and contaminant removal for sewage sludge.
Collapse
|
4
|
Madondo NI, Rathilal S, Bakare BF, Tetteh EK. Application of Bioelectrochemical Systems and Anaerobic Additives in Wastewater Treatment: A Conceptual Review. Int J Mol Sci 2023; 24:4753. [PMID: 36902185 PMCID: PMC10003464 DOI: 10.3390/ijms24054753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The interspecies electron transfer (IET) between microbes and archaea is the key to how the anaerobic digestion process performs. However, renewable energy technology that utilizes the application of a bioelectrochemical system together with anaerobic additives such as magnetite-nanoparticles can promote both direct interspecies electron transfer (DIET) as well as indirect interspecies electron transfer (IIET). This has several advantages, including higher removal of toxic pollutants present in municipal wastewater, higher biomass to renewable energy conversion, and greater electrochemical efficiencies. This review explores the synergistic influence of bioelectrochemical systems and anaerobic additives on the anaerobic digestion of complex substrates such as sewage sludge. The review discussions present the mechanisms and limitations of the conventional anaerobic digestion process. In addition, the applicability of additives in syntrophic, metabolic, catalytic, enzymatic, and cation exchange activities of the anaerobic digestion process are highlighted. The synergistic effect of bio-additives and operational factors of the bioelectrochemical system is explored. It is elucidated that a bioelectrochemical system coupled with nanomaterial additives can increase biogas-methane potential compared to anaerobic digestion. Therefore, the prospects of a bioelectrochemical system for wastewater require research attention.
Collapse
Affiliation(s)
- Nhlanganiso Ivan Madondo
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Sudesh Rathilal
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| | - Babatunde Femi Bakare
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Faculty of Engineering, Mangosuthu University of Technology, Durban 4026, South Africa
| | - Emmanuel Kweinor Tetteh
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and The Built Environment, Durban University of Technology, Steve Biko Campus, S4 Level 1, Durban 4000, South Africa
| |
Collapse
|
5
|
Yu Q, Mao H, Yang B, Zhu Y, Sun C, Zhao Z, Li Y, Zhang Y. Electro-polarization of protein-like substances accelerates trans-cell-wall electron transfer in microbial extracellular respiration. iScience 2023; 26:106065. [PMID: 36818305 PMCID: PMC9929677 DOI: 10.1016/j.isci.2023.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Electrical stimulation has been used to strengthen microbial extracellular electron transfer (EET), however, the deep-seated reasons remain unclear. Here we reported that Bacillus subtilis, a typical gram-positive bacterium capable of extracellular respiration, obtained a higher EET capacity after the electrical domestication. After the electrical domestication, the current generated by the EET of B. subtilis was 23.4-fold that of the control group without pre-domestication. Multiple lines of evidence in bacterial cells of B. subtilis, their cell walls, and a model tripeptide indicated that the polarization of amide groups after the electrical stimulation forwarded the H-bonds recombination and radical generation of protein-like substances to develop extracellular electron transfer via the proton-coupled pattern. The improved electrochemical properties of protein-like substances benefited the trans-cell-wall electron transfer and strengthen extracellular respiration. This study was the first exploration to promote microbial extracellular respiration by improving the electrochemical properties of protein-like substances in cell envelopes.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haohao Mao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yahui Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China,Corresponding author
| |
Collapse
|
6
|
Utilization of Response Surface Methodology in Optimization and Modelling of a Microbial Electrolysis Cell for Wastewater Treatment Using Box–Behnken Design Method. Catalysts 2022. [DOI: 10.3390/catal12091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A vast quantity of untreated wastewater is discharged into the environment, resulting in contamination of receiving waters. A microbial electrolysis cell (MEC) is a promising bioelectrochemical system (BES) for wastewater treatment and energy production. However, poor design and control of MEC variables may lead to inhibition in the system. This study explored the utilization of Response Surface Methodology (RSM) on the synergistic aspects of MEC and magnetite nanoparticles for wastewater treatment. Influences of temperature (25–35 °C), voltage supply (0.3–1.3 V) and magnetite nanoparticle dosage (0.1–1.0 g) on the biochemical methane potentials (BMPs) were investigated with the aim of optimizing biogas yield, chemical oxygen demand removal and current density. The analysis of variance (ANOVA) technique verified that the quadratic models obtained were substantial, with p-values below 0.05 and high regression coefficients (R2). The optimum biogas yield of 563.02 mL/g VSfed, chemical oxygen demand (COD) removal of 97.52%, and current density of 26.05 mA/m2 were obtained at 32.2 °C, 0.77 V and 0.53 g. The RSM revealed a good comparison between the predicted and actual responses. This study revealed the effective utilization of statistical modeling and optimization to improve the performance of the MEC to achieve a sustainable and eco-friendly situation.
Collapse
|
7
|
Anaerobic Digested Wastewater CO2 Sequestration Using a Biophotocatalytic System with a Magnetized Photocatalyst (Fe-TiO2). Molecules 2022; 27:molecules27165213. [PMID: 36014454 PMCID: PMC9416098 DOI: 10.3390/molecules27165213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
This study presents a biophotocatalytic system as a sustainable technology for the recovery of clean water and renewable energy from wastewater, thereby providing a unique opportunity to drive industrialization and global sustainable development throughputs. Herein, inhouse magnetized photocatalyst (Fe-TiO2) with surface area 62.73 m2/g synthesized via co-precipitation, was hypothesized to hasten an up-flow anaerobic sludge blanket (UASB) reactor for the treatment of local South Africa municipality wastewater with the benefit of high-quality biogas production. A lab scale UASB process with a working volume of 5 L coupled with two UV-lights (T8 blacklight-blue tube, 365 nm, 18 W) was operated batchwise under mesophilic conditions for the period of 30 days with a constant organic load charge of 2.76 kg COD/m3. d. This biophotocatalytic system performance was investigated and compared with and without the Fe-TiO2 charge (2–6 g) with respect to effluent quality, biogas production and CO2 methanation. Using chemical oxygen demand (COD) measured as the degree of degradation of the pollutants, the best efficiency of 93% COD removal was achieved by a 4 g Fe-TiO2 charge at 14 days and pH of 7.13, as compared to zero charge where only 49.6% degradation was achieved. Under the same charge, cumulative biogas and methane content of 1500 mL/g COD.d and 85% were respectively attained as compared with the control with 400 mL/g COD.d and 65% methane content. Also, the energy produced can be used to offset the energy utilized by the UV-light for the wastewater abatement and other limitations of photocatalysis. The BP system was found to be an eco-friendly and cost-effective technology to be explored in water treatment settings.
Collapse
|
8
|
Application of Bioelectrochemical System and Magnetite Nanoparticles on the Anaerobic Digestion of Sewage Sludge: Effect of Electrode Configuration. Catalysts 2022. [DOI: 10.3390/catal12060642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Conventional anaerobic digestion is currently challenged by limited degradability and low methane production. Herein, it is proposed that magnetic nanoparticles (Fe3O4-NPs) and bioelectrochemical systems can be employed for the improvement of organic content degradation. In this study, the effect of electrode configuration was examined through the application of a bioelectrochemical system and Fe3O4-NPs in anaerobic digestion (AD). A microbial electrolysis cell with cylindrical electrodes (MECC) and a microbial electrolysis cell (MEC) with rectangular electrodes were compared against the traditional AD process. Biochemical methane potential (BMP) tests were carried out using digesters with a working volume of 800 mL charged with 300 mL inoculum, 500 mL substrate, and 1 g Fe3O4-NPs. The electrodes (zinc and copper) of both digesters were inserted inside the BMPs and were powered with 0.4 V for 30 days at 40 °C. The MECC performed better, improving degradability, with enhanced methane percentage (by 49% > 39.1% of the control), and reduced water pollutants (chemical-oxygen demand, total organic carbon, total suspended solids, turbidity, and color) by more than 88.6%. The maximum current density was 33.3 mA/m2, and the coulombic efficiency was 54.4%. The MECC showed a remarkable potential to maximize methane enhancement and pollution removal by adjusting the electrode configuration.
Collapse
|
9
|
Effect of an Electromagnetic Field on Anaerobic Digestion: Comparing an Electromagnetic System (ES), a Microbial Electrolysis System (MEC), and a Control with No External Force. Molecules 2022; 27:molecules27113372. [PMID: 35684310 PMCID: PMC9182473 DOI: 10.3390/molecules27113372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
This study examined the application of an electromagnetic field to anaerobic digestion by using an electromagnetic system (ES), a microbial electrolysis cell (MEC), and a control with no external force. The experimental work was performed by carrying out biochemical methane potential (BMP) tests using 1 L biodigesters. The bioelectrochemical digesters were supplied with 0.4 V for 30 days at 40 °C. The electromagnetic field of the ES was generated by coiling copper wire to form a solenoid in the BMP system, whereas the MEC consisted of zinc and copper electrodes inside the BMP system. The best performing system was the MEC, with a yield of 292.6 mL CH4/g chemical oxygen demand removed (CODremoved), methane content of 86%, a maximum current density of 23.3 mA/m2, a coulombic efficiency of 110.4%, and an electrical conductivity of 180 µS/cm. Above 75% removal of total suspended solids (TSS), total organic carbon (TOC), phosphate, and ammonia nitrogen (NH3-N) was also recorded. However, a longer exposure (>8 days) to higher magnetic intensity (6.24 mT) on the ES reduced its overall performance. In terms of energy, the MEC produced the greatest annual energy profit (327.0 ZAR/kWh or 23.36 USD/kWh). The application of an electromagnetic field in anaerobic digestion, especially a MEC, has the potential to maximize the methane production and the degradability of the wastewater organic content.
Collapse
|
10
|
Abstract
This review study attempts to summarize available energy storage systems in order to accelerate the adoption of renewable energy. Inefficient energy storage systems have been shown to function as a deterrent to the implementation of sustainable development. It is therefore critical to conduct a thorough examination of existing and soon-to-be-developed energy storage technologies. Various scholarly publications in the fields of energy storage systems and renewable energy have been reviewed and summarized. Data and themes have been further highlighted with the use of appropriate figures and tables. Case studies and examples of major projects have also been researched to gain a better understanding of the energy storage technologies evaluated. An insightful analysis of present energy storage technologies and other possible innovations have been discovered with the use of suitable literature review and illustrations. This report also emphasizes the critical necessity for an efficient storage system if renewable energy is to be widely adopted.
Collapse
|
11
|
Biophotocatalytic Reduction of CO2 in Anaerobic Biogas Produced from Wastewater Treatment Using an Integrated System. Catalysts 2022. [DOI: 10.3390/catal12010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study presents the bio-photocatalytic upgrading of biogas utilising carbon dioxide (CO2) as a potential option for beginning fossil fuel depletion and the associated environmental risks in the pursuit of sustainable development. Herein, magnetite photocatalyst (Fe-TiO2) was employed with an integrated anaerobic-photomagnetic system for the decontamination of municipality wastewater for biogas production. The Fe-TiO2 photocatalyst used, manufactured via a co-precipitation technique, had a specific surface area of 62.73 m2/g, micropore volume of 0.017 cm3/g and pore size of 1.337 nm. The results showed that using the ultraviolet-visible (UV-Vis) photomagnetic system as a post-treatment to the anaerobic digestion (AD) process was very effective with over 85% reduction in colour, chemical oxygen demand (COD) and turbidity. With an organic loading rate (OLR) of 0.394 kg COD/L·d and hydraulic retention time (HTR) of 21 days, a 92% degradation of the organic content (1.64 kgCOD/L) was attained. This maximised the bioenergy production to 5.52 kWh/m3 with over 10% excess energy to offset the energy demand of the UV-Vis lamp. Assuming 33% of the bioenergy produced was used as electricity to power the UV-Vis lamp, the CO2 emission reduction was 1.74 kg CO2 e/m3, with good potential for environmental conservation.
Collapse
|