1
|
Federspiel JM, Reil JC, Xu A, Scholtz S, Batzner A, Maack C, Sequeira V. Retrofitting the Heart: Explaining the Enigmatic Septal Thickening in Hypertrophic Cardiomyopathy. Circ Heart Fail 2024; 17:e011435. [PMID: 38695186 DOI: 10.1161/circheartfailure.123.011435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 05/23/2024]
Abstract
Hypertrophic cardiomyopathy is the most common genetic cardiac disease and is characterized by left ventricular hypertrophy. Although this hypertrophy often associates with sarcomeric gene mutations, nongenetic factors also contribute to the disease, leading to diastolic dysfunction. Notably, this dysfunction manifests before hypertrophy and is linked to hypercontractility, as well as nonuniform contraction and relaxation (myofibril asynchrony) of the myocardium. Although the distribution of hypertrophy in hypertrophic cardiomyopathy can vary both between and within individuals, in most cases, it is primarily confined to the interventricular septum. The reasons for septal thickening remain largely unknown. In this article, we propose that alterations in muscle fiber geometry, present from birth, dictate the septal shape. When combined with hypercontractility and exacerbated by left ventricular outflow tract obstruction, these factors predispose the septum to an isometric type of contraction during systole, consequently constraining its mobility. This contraction, or more accurately, this focal increase in biomechanical stress, prompts the septum to adapt and undergo remodeling. Drawing a parallel, this is reminiscent of how earthquake-resistant buildings are retrofitted with vibration dampers to absorb the majority of the shock motion and load. Similarly, the heart adapts by synthesizing viscoelastic elements such as microtubules, titin, desmin, collagen, and intercalated disc components. This pronounced remodeling in the cytoskeletal structure leads to noticeable septal hypertrophy. This structural adaptation acts as a protective measure against damage by attenuating myofibril shortening while reducing cavity tension according to Laplace Law. By examining these events, we provide a coherent explanation for the septum's predisposition toward hypertrophy.
Collapse
Affiliation(s)
- Jan M Federspiel
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
- Saarland University, Faculty of Medicine, Institute for Legal Medicine, Homburg (Saar), Germany (J.M.F.)
| | - Jan-Christian Reil
- Klinik für allgemeine und interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R., S.S.)
| | - Anton Xu
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
| | - Smita Scholtz
- Klinik für allgemeine und interventionelle Kardiologie, Herz- und Diabetes-Zentrum Nordrhein-Westphalen, Germany (J.-C.R., S.S.)
| | - Angelika Batzner
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
- Department of Internal Medicine I, University Hospital Würzburg, Germany (A.B.)
| | - Christoph Maack
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
| | - Vasco Sequeira
- Comprehensive Heart Failure Center, Department of Translational Science University Clinic Würzburg, Germany (J.M.F., A.X., A.B., C.M., V.S.)
| |
Collapse
|
2
|
Ponnusamy SS, Ganesan V, Anand V, Vadivelu R, Kumar M, Mariappan S, Murugan S, Vijayaraman P. Observations of interventricular septal behavior during left bundle branch pacing. J Cardiovasc Electrophysiol 2023; 34:2246-2254. [PMID: 37694670 DOI: 10.1111/jce.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Left bundle branch pacing (LBBP) involves the deployment of the lead deep inside the septum. Penetration of the septum by the lead depends on the texture of the septum, rapidity of rotations, operator experience, and implantation tools. OBJECTIVES The aim of our study was to assess the behavior of the lumenless lead during rapid rotations and the physiological property of the interventricular septum(IVS) during LBBP. METHODS Patients undergoing LBBP between January 2021 and December 2022 were retrospectively included in the study. RESULTS Among 255 attempted patients, 20 (7.9%) had procedural failure(no LBB capture-four, inability to penetrate septum-seven, and dislodgements after sheath removal-nine). Septal penetration achieved in 248/255 patients (97.2%). Lead movement inside the IVS was assessed by lead traverse time. Based on the behavior of the IVS (n = 255), three different responses were noted. Type-I response(normal/firm septum) in 93.7% (n = 239) characterized by constant and progressive movement of lead. Neither perforation nor further change in premature-ventricular-complex morphology beyond M-beat were observed despite additional few unintentional rotations indicating the protective mechanism of LV-endocardium. Type-II response(soft/cheesy septum) in 3.5% (n = 9) characterized by hyper-movement of lead without resistance due to altered texture of septum and poor LV subendocardial barrier resulting in perforation. No patients in this group had LV dysfunction or associated coronary artery disease. In type-III response, seen in 2.8% (n = 7), lead could not be penetrated due to scar in IVS. CONCLUSION Three different patterns of responses were observed during LBBP. The most distinct type-ll response was associated with soft/cheesy septum with hyper-movement of the lead predisposing for future dislodgments in patients without structural heart disease.
Collapse
Affiliation(s)
| | - Vidhya Ganesan
- Department of Microbiology, Velammal Medical College, Madurai, India
| | - Vijesh Anand
- Department of Cardiology, Velammal Medical College, Madurai, India
| | | | - Mahesh Kumar
- Department of Cardiology, Velammal Medical College, Madurai, India
| | | | - Senthil Murugan
- Department of Cardiology, Velammal Medical College, Madurai, India
| | - Pugazhendhi Vijayaraman
- Department of Cardiology, Geisinger Heart Institute, Geisinger Commonwealth School of Medicine, Wilkes Barre, Pennsylvania, USA
| |
Collapse
|
3
|
Chi Q, Liu P, Liang H. Biomechanics Assist Measurement, Modeling, Engineering Applications, and Clinical Decision Making in Medicine. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010020. [PMID: 36671592 PMCID: PMC9854684 DOI: 10.3390/bioengineering10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Biomechanical studies of surgeries and medical devices are usually performed with human or animal models [...].
Collapse
Affiliation(s)
- Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Pengchao Liu
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Correspondence:
| |
Collapse
|
4
|
Garcia-Canadilla P, Mohun TJ, Bijnens B, Cook AC. Detailed quantification of cardiac ventricular myocardial architecture in the embryonic and fetal mouse heart by application of structure tensor analysis to high resolution episcopic microscopic data. Front Cell Dev Biol 2022; 10:1000684. [DOI: 10.3389/fcell.2022.1000684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The mammalian heart, which is one of the first organs to form and function during embryogenesis, develops from a simple tube into a complex organ able to efficiently pump blood towards the rest of the body. The progressive growth of the compact myocardium during embryonic development is accompanied by changes in its structural complexity and organisation. However, how myocardial myoarchitecture develops during embryogenesis remain poorly understood. To date, analysis of heart development has focused mainly on qualitative descriptions using selected 2D histological sections. High resolution episcopic microscopy (HREM) is a novel microscopic imaging technique that enables to obtain high-resolution three-dimensional images of the heart and perform detailed quantitative analyses of heart development. In this work, we performed a detailed characterization of the development of myocardial architecture in wildtype mice, from E14.5 to E18.5, by means of structure tensor analysis applied to HREM images of the heart. Our results shows that even at E14.5, myocytes are already aligned, showing a gradual change in their helical angle from positive angulation in the endocardium towards negative angulation in the epicardium. Moreover, there is gradual increase in the degree of myocardial organisation concomitant with myocardial growth. However, the development of the myoarchitecture is heterogeneous showing regional differences between ventricles, ventricular walls as well as between myocardial layers, with different growth patterning between the endocardium and epicardium. We also found that the percentage of circumferentially arranged myocytes within the LV significantly increases with gestational age. Finally, we found that fractional anisotropy (FA) within the LV gradually increases with gestational age, while the FA within RV remains unchanged.
Collapse
|
5
|
The Interventricular Septum: Structure, Function, Dysfunction, and Diseases. J Clin Med 2022; 11:jcm11113227. [PMID: 35683618 PMCID: PMC9181036 DOI: 10.3390/jcm11113227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
Vertebrates developed pulmonary circulation and septated the heart into venous and arterial compartments, as the adaptation from aquatic to terrestrial life requires more oxygen and energy. The interventricular septum (IVS) accommodates the ventricular portion of the conduction system and contributes to the mechanical function of both ventricles. Conditions or diseases that affect IVS structure and function (e.g., hypertrophy, defects, other) may lead to ventricular pump failure and/or ventricular arrhythmias with grave consequences. IVS structure and function can be evaluated today using current imaging techniques. Effective therapies can be provided in most cases, although definitions of underlying etiologies may not always be easy, particularly in the elderly due to overlap between genetic and acquired causes of IVS hypertrophy, the most common being IVS abnormality. In this review, state-of-the-art information regarding IVS morphology, physiology, physiopathology, and disease is presented.
Collapse
|
6
|
Nguyen-Truong M, Kim S, Doherty C, Frederes M, LeBar K, Ghosh S, Hematti P, Chinnadurai R, Wagner WR, Wang Z. Pro-angiogenic Potential of Mesenchymal Stromal Cells Regulated by Matrix Stiffness and Anisotropy Mimicking Right Ventricles. Biomacromolecules 2022; 23:2353-2361. [PMID: 35502841 DOI: 10.1021/acs.biomac.2c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capillary rarefaction is a hallmark of right ventricle (RV) failure. Mesenchymal stromal cell (MSC)-based therapy offers a potential treatment due to its pro-angiogenic function. However, the impact of RV tissue mechanics on MSC behavior is unclear, especially when referring to RV end-diastolic stiffness and mechanical anisotropy. In this study, we assessed MSC behavior on electrospun scaffolds with varied stiffness (normal vs failing RV) and anisotropy (isotropic vs anisotropic). In individual MSCs, we observed the highest vascular endothelial growth factor (VEGF) production and total tube length in the failing, isotropic group (2.00 ± 0.37, 1.53 ± 0.24), which was greater than the normal, isotropic group (0.70 ± 0.15, 0.55 ± 0.07; p < 0.05). The presence of anisotropy led to trends of increased VEGF production on normal groups (0.75 ± 0.09 vs 1.20 ± 0.17), but this effect was absent on failing groups. Our findings reveal synergistic effects of RV-like stiffness and anisotropy on MSC pro-angiogenic function and may guide MSC-based therapies for heart failure.
Collapse
Affiliation(s)
- Michael Nguyen-Truong
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Courtney Doherty
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| | - Megan Frederes
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| | - Kristen LeBar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| | - Soham Ghosh
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin, Madison-School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 31207, United States
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| |
Collapse
|
7
|
Liu W, Nguyen-Truong M, LeBar K, Labus KM, Gray E, Ahern M, Neelakantan S, Avazmohammadi R, McGilvray KC, Puttlitz CM, Wang Z. Multiscale Contrasts Between the Right and Left Ventricle Biomechanics in Healthy Adult Sheep and Translational Implications. Front Bioeng Biotechnol 2022; 10:857638. [PMID: 35528212 PMCID: PMC9068898 DOI: 10.3389/fbioe.2022.857638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Cardiac biomechanics play a significant role in the progression of structural heart diseases (SHDs). SHDs alter baseline myocardial biomechanics leading to single or bi-ventricular dysfunction. But therapies for left ventricle (LV) failure patients do not always work well for right ventricle (RV) failure patients. This is partly because the basic knowledge of baseline contrasts between the RV and LV biomechanics remains elusive with limited discrepant findings. The aim of the study was to investigate the multiscale contrasts between LV and RV biomechanics in large animal species. We hypothesize that the adult healthy LV and RV have distinct passive anisotropic biomechanical properties. Ex vivo biaxial tests were performed in fresh sheep hearts. Histology and immunohistochemistry were performed to measure tissue collagen. The experimental data were then fitted to a Fung type model and a structurally informed model, separately. We found that the LV was stiffer in the longitudinal (outflow tract) than circumferential direction, whereas the RV showed the opposite anisotropic behavior. The anisotropic parameter K from the Fung type model accurately captured contrasting anisotropic behaviors in the LV and RV. When comparing the elasticity in the same direction, the LV was stiffer than the RV longitudinally and the RV was stiffer than the LV circumferentially, suggesting different filling patterns of these ventricles during diastole. Results from the structurally informed model suggest potentially stiffer collagen fibers in the LV than RV, demanding further investigation. Finally, type III collagen content was correlated with the low-strain elastic moduli in both ventricles. In summary, our findings provide fundamental biomechanical differences between the chambers. These results provide valuable insights for guiding cardiac tissue engineering and regenerative studies to implement chamber-specific matrix mechanics, which is particularly critical for identifying biomechanical mechanisms of diseases or mechanical regulation of therapeutic responses. In addition, our results serve as a benchmark for image-based inverse modeling technologies to non-invasively estimate myocardial properties in the RV and LV.
Collapse
Affiliation(s)
- Wenqiang Liu
- Cardiovascular Biomechanics Laboratory, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Michael Nguyen-Truong
- Cardiovascular Biomechanics Laboratory, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Kristen LeBar
- Cardiovascular Biomechanics Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Kevin M. Labus
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Elisabeth Gray
- Cardiovascular Biomechanics Laboratory, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Matt Ahern
- Cardiovascular Biomechanics Laboratory, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Sunder Neelakantan
- Computation Cardiovascular Bioengineering Lab, Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Reza Avazmohammadi
- Computation Cardiovascular Bioengineering Lab, Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Computation Cardiovascular Bioengineering Lab, J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, United States
| | - Kirk C. McGilvray
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- Orthopaedic Bioengineering Research Laboratory, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Christian M. Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- Orthopaedic Bioengineering Research Laboratory, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Zhijie Wang
- Cardiovascular Biomechanics Laboratory, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Cardiovascular Biomechanics Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Zhijie Wang,
| |
Collapse
|