1
|
Xu Z, Arkudas A, Munawar MA, Schubert DW, Fey T, Weisbach V, Mengen LM, Horch RE, Cai A. Schwann Cells Do Not Promote Myogenic Differentiation in the EPI Loop Model. Tissue Eng Part A 2024; 30:244-256. [PMID: 38063005 DOI: 10.1089/ten.tea.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
In skeletal muscle tissue engineering, innervation and vascularization play an essential role in the establishment of functional skeletal muscle. For adequate three-dimensional assembly, biocompatible aligned nanofibers are beneficial as matrices for cell seeding. The aim of this study was to analyze the impact of Schwann cells (SC) on myoblast (Mb) and adipogenic mesenchymal stromal cell (ADSC) cocultures on poly-ɛ-caprolactone (PCL)-collagen I-nanofibers in vivo. Human Mb/ADSC cocultures, as well as Mb/ADSC/SC cocultures, were seeded onto PCL-collagen I-nanofiber scaffolds and implanted into the innervated arteriovenous loop model (EPI loop model) of immunodeficient rats for 4 weeks. Histological staining and gene expression were used to compare their capacity for vascularization, immunological response, myogenic differentiation, and innervation. After 4 weeks, both Mb/ADSC and Mb/ADSC/SC coculture systems showed similar amounts and distribution of vascularization, as well as immunological activity. Myogenic differentiation could be observed in both groups through histological staining (desmin, myosin heavy chain) and gene expression (MYOD, MYH3, ACTA1) without significant difference between groups. Expression of CHRNB and LAMB2 also implied neuromuscular junction formation. Our study suggests that the addition of SC did not significantly impact myogenesis and innervation in this model. The implanted motor nerve branch may have played a more significant role than the presence of SC.
Collapse
Affiliation(s)
- Zhou Xu
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Andreas Arkudas
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Muhammad Azeem Munawar
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk W Schubert
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lilly M Mengen
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aijia Cai
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Pasquier E, Rosendahl J, Solberg A, Ståhlberg A, Håkansson J, Chinga-Carrasco G. Polysaccharides and Structural Proteins as Components in Three-Dimensional Scaffolds for Breast Cancer Tissue Models: A Review. Bioengineering (Basel) 2023; 10:682. [PMID: 37370613 PMCID: PMC10295496 DOI: 10.3390/bioengineering10060682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells.
Collapse
Affiliation(s)
- Eva Pasquier
- RISE PFI AS, Høgskoleringen 6b, NO-7491 Trondheim, Norway; (E.P.); (A.S.)
| | - Jennifer Rosendahl
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, 50115 Borås, Sweden; (J.R.); (J.H.)
| | - Amalie Solberg
- RISE PFI AS, Høgskoleringen 6b, NO-7491 Trondheim, Norway; (E.P.); (A.S.)
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Box 857, 50115 Borås, Sweden; (J.R.); (J.H.)
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
3
|
Horch RE, Arkudas A. Special Issue "Plastic and Reconstructive Surgery in Personalized Medicine". J Pers Med 2023; 13:jpm13030569. [PMID: 36983750 PMCID: PMC10059863 DOI: 10.3390/jpm13030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
With an ever-growing knowledge in various disciplines of medicine and with rapidly evolving new techniques and operative methods in plastic surgery, it is obvious that it becomes more and more difficult to keep up with all the developments in this field at any time [...].
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg FAU, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg FAU, Krankenhausstrasse 12, 91054 Erlangen, Germany
| |
Collapse
|
4
|
A Novel Window into Angiogenesis-Intravital Microscopy in the AV-Loop-Model. Cells 2023; 12:cells12020261. [PMID: 36672196 PMCID: PMC9857023 DOI: 10.3390/cells12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Due to the limitations of current in vivo experimental designs, our comprehensive knowledge of vascular development and its implications for the development of large-scale engineered tissue constructs is very limited. Therefore, the purpose of this study was to develop unique in vivo imaging chambers that allow the live visualization of cellular processes in the arteriovenous (AV) loop model in rats. We have developed two different types of chambers. Chamber A is installed in the skin using the purse sting fixing method, while chamber B is installed subcutaneously under the skin. Both chambers are filled with modified gelatin hydrogel as a matrix. Intravital microscopy (IVM) was performed after the injection of fluorescein isothiocyanate (FITC)-labeled dextran and rhodamine 6G dye. The AV loop was functional for two weeks in chamber A and allowed visualization of the leukocyte trafficking. In chamber B, microvascular development in the AV loop could be examined for 21 days. Quantification of the microvascular outgrowth was performed using Fiji-ImageJ. Overall, by combining these two IVM chambers, we can comprehensively understand vascular development in the AV loop tissue engineering model¯.
Collapse
|