1
|
Borys BS, Dang T, Worden H, Larijani L, Corpuz JM, Abraham BD, Gysel EJ, Malinovska J, Krawetz R, Revay T, Argiropoulos B, Rancourt DE, Kallos MS, Jung S. Robust bioprocess design and evaluation of commercial media for the serial expansion of human induced pluripotent stem cell aggregate cultures in vertical-wheel bioreactors. Stem Cell Res Ther 2024; 15:232. [PMID: 39075528 PMCID: PMC11288049 DOI: 10.1186/s13287-024-03819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND While pluripotent stem cell (PSC) therapies move toward clinical and commercial applications at a rapid rate, manufacturing reproducibility and robustness are notable bottlenecks in regulatory approval. Therapeutic applications of PSCs require large cell quantities to be generated under highly robust, well-defined, and economically viable conditions. Small-scale and short-term process optimization, however, is often performed in a linear fashion that does not account for time needed to verify the bioprocess protocols and analysis methods used. Design of a reproducible and robust bioprocess should be dynamic and include a continuous effort to understand how the process will respond over time and to different stresses before transitioning into large-scale production where stresses will be amplified. METHODS This study utilizes a baseline protocol, developed for the short-term culture of PSC aggregates in Vertical-Wheel® bioreactors, to evaluate key process attributes through long-term (serial passage) suspension culture. This was done to access overall process robustness when performed with various commercially available media and cell lines. Process output variables including growth kinetics, aggregate morphology, harvest efficiency, genomic stability, and functional pluripotency were assessed through short and long-term culture. RESULTS The robust nature of the expansion protocol was demonstrated over a six-day culture period where spherical aggregate formation and expansion were observed with high-fold expansions for all five commercial media tested. Profound differences in cell growth and quality were revealed only through long-term serial expansion and in-vessel dissociation operations. Some commercial media formulations tested demonstrated maintenance of cell growth rates, aggregate morphology, and high harvest recovery efficiencies through three bioreactor serial passages using multiple PSC lines. Exceptional bioprocess robustness was even demonstrated with sustained growth and quality maintenance over 10 serial bioreactor passages. However, some commercial media tested proved less equipped for serial passage cultures in bioreactors as cultures led to cell lysis during dissociation, reduction in growth rates, and a loss of aggregate morphology. CONCLUSIONS This study demonstrates the importance of systematic selection and testing of bioprocess input variables, with multiple bioprocess output variables through serial passages to create a truly reproducible and robust protocol for clinical and commercial PSC production using scalable bioreactor systems.
Collapse
Affiliation(s)
- Breanna S Borys
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Hannah Worden
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA
| | - Leila Larijani
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Jessica M Corpuz
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Brett D Abraham
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Emilie J Gysel
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Julia Malinovska
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Roman Krawetz
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Tamas Revay
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, Calgary, AB, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Sunghoon Jung
- PBS Biotech Inc, 4721 Calle Carga, Camarillo, CA, 93012, USA.
| |
Collapse
|
2
|
Haskell A, White BP, Rogers RE, Goebel E, Lopez MG, Syvyk AE, de Oliveira DA, Barreda HA, Benton J, Benavides OR, Dalal S, Bae E, Zhang Y, Maitland K, Nikolov Z, Liu F, Lee RH, Kaunas R, Gregory CA. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Cytotherapy 2024; 26:372-382. [PMID: 38363250 PMCID: PMC11057043 DOI: 10.1016/j.jcyt.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AIMS Human mesenchymal stromal cells (hMSCs) and their secreted products show great promise for treatment of musculoskeletal injury and inflammatory or immune diseases. However, the path to clinical utilization is hampered by donor-tissue variation and the inability to manufacture clinically relevant yields of cells or their products in a cost-effective manner. Previously we described a method to produce chemically and mechanically customizable gelatin methacryloyl (GelMA) microcarriers for culture of hMSCs. Herein, we demonstrate scalable GelMA microcarrier-mediated expansion of induced pluripotent stem cell (iPSC)-derived hMSCs (ihMSCs) in 500 mL and 3L vertical wheel bioreactors, offering several advantages over conventional microcarrier and monolayer-based expansion strategies. METHODS Human mesenchymal stromal cells derived from induced pluripotent cells were cultured on custom-made spherical gelatin methacryloyl microcarriers in single-use vertical wheel bioreactors (PBS Biotech). Cell-laden microcarriers were visualized using confocal microscopy and elastic light scattering methodologies. Cells were assayed for viability and differentiation potential in vitro by standard methods. Osteogenic cell matrix derived from cells was tested in vitro for osteogenic healing using a rodent calvarial defect assay. Immune modulation was assayed with an in vivo peritonitis model using Zymozan A. RESULTS The optical properties of GelMA microcarriers permit noninvasive visualization of cells with elastic light scattering modalities, and harvest of product is streamlined by microcarrier digestion. At volumes above 500 mL, the process is significantly more cost-effective than monolayer culture. Osteogenic cell matrix derived from ihMSCs expanded on GelMA microcarriers exhibited enhanced in vivo bone regenerative capacity when compared to bone morphogenic protein 2, and the ihMSCs exhibited superior immunosuppressive properties in vivo when compared to monolayer-generated ihMSCs. CONCLUSIONS These results indicate that the cell expansion strategy described here represents a superior approach for efficient generation, monitoring and harvest of therapeutic MSCs and their products.
Collapse
Affiliation(s)
- Andrew Haskell
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Berkley P White
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Robert E Rogers
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Erin Goebel
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Megan G Lopez
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Andrew E Syvyk
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA
| | - Daniela A de Oliveira
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA; Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Heather A Barreda
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Joshua Benton
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Oscar R Benavides
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Sujata Dalal
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - EunHye Bae
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Yu Zhang
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Kristen Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Imaging Program, Chan Zuckerberg Initiative, Redwood City, California, USA
| | - Zivko Nikolov
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA; Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Fei Liu
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Carl A Gregory
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA.
| |
Collapse
|
3
|
Puri D, Kumar R, Sihag P, Thakur MS, Perveen K, Alfaisal FM, Lee D. Analytical Investigation of the Impact of Jet Geometry on Aeration Effectiveness Using Soft Computing Techniques. ACS OMEGA 2023; 8:31811-31825. [PMID: 37692205 PMCID: PMC10483528 DOI: 10.1021/acsomega.3c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
Jet aeration is a commonly used technique for introducing air into water during wastewater treatment. In this investigation, the efficacy of different soft computing models, namely, Random Forest, Reduced Error Pruning Tree, Artificial Neural Network (ANN), Gaussian Process, and Support Vector Machine, was examined in predicting the aeration efficiency (E20) of circular and square jet configurations in an open channel flow. A total of 126 experimental data points were utilized to develop and validate these models. To assess the models' performance, three goodness-of-fit parameters were employed: correlation coefficient (CC), root-mean-square error (RMSE), and mean absolute error (MAE). The analysis revealed that all of the developed models exhibited predictive capabilities, with CC values surpassing 0.8. Nonetheless, when it comes to predicting E20, the ANN model outperformed other soft computing models, achieving a CC of 0.9748, MAE of 0.0164, and RMSE of 0.0211. A sensitivity analysis emphasized that the angle of inclination exerted the most significant influence on the aeration in an open channel. Furthermore, the results demonstrated that square jets delivered superior aeration compared to that of circular jets under identical operating conditions.
Collapse
Affiliation(s)
- Diksha Puri
- School
of Environmental Science, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Raj Kumar
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| | - Parveen Sihag
- Department
of Civil Engineering, Chandigarh University, Mohali, Punjab 140301, India
| | - Mohindra Singh Thakur
- Department
of Civil Engineering, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kahkashan Perveen
- Department
of Botany & Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Faisal M. Alfaisal
- Department
of Civil Engineering, College of Engineering, King Saud University, Riyadh 11495, Saudi Arabia
| | - Daeho Lee
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| |
Collapse
|