1
|
Henry B, Merz M, Hoang H, Abdulkarim G, Wosik J, Schoettker P. Cuffless Blood Pressure in clinical practice: challenges, opportunities and current limits. Blood Press 2024; 33:2304190. [PMID: 38245864 DOI: 10.1080/08037051.2024.2304190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Background: Cuffless blood pressure measurement technologies have attracted significant attention for their potential to transform cardiovascular monitoring.Methods: This updated narrative review thoroughly examines the challenges, opportunities, and limitations associated with the implementation of cuffless blood pressure monitoring systems.Results: Diverse technologies, including photoplethysmography, tonometry, and ECG analysis, enable cuffless blood pressure measurement and are integrated into devices like smartphones and smartwatches. Signal processing emerges as a critical aspect, dictating the accuracy and reliability of readings. Despite its potential, the integration of cuffless technologies into clinical practice faces obstacles, including the need to address concerns related to accuracy, calibration, and standardization across diverse devices and patient populations. The development of robust algorithms to mitigate artifacts and environmental disturbances is essential for extracting clear physiological signals. Based on extensive research, this review emphasizes the necessity for standardized protocols, validation studies, and regulatory frameworks to ensure the reliability and safety of cuffless blood pressure monitoring devices and their implementation in mainstream medical practice. Interdisciplinary collaborations between engineers, clinicians, and regulatory bodies are crucial to address technical, clinical, and regulatory complexities during implementation. In conclusion, while cuffless blood pressure monitoring holds immense potential to transform cardiovascular care. The resolution of existing challenges and the establishment of rigorous standards are imperative for its seamless incorporation into routine clinical practice.Conclusion: The emergence of these new technologies shifts the paradigm of cardiovascular health management, presenting a new possibility for non-invasive continuous and dynamic monitoring. The concept of cuffless blood pressure measurement is viable and more finely tuned devices are expected to enter the market, which could redefine our understanding of blood pressure and hypertension.
Collapse
Affiliation(s)
- Benoit Henry
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maxime Merz
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Harry Hoang
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ghaith Abdulkarim
- Neuro-Informatics Laboratory, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jedrek Wosik
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Patrick Schoettker
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Cesarelli G, Ponsiglione AM, Sansone M, Amato F, Donisi L, Ricciardi C. Machine Learning for Biomedical Applications. Bioengineering (Basel) 2024; 11:790. [PMID: 39199748 PMCID: PMC11351950 DOI: 10.3390/bioengineering11080790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 09/01/2024] Open
Abstract
Machine learning (ML) is a field of artificial intelligence that uses algorithms capable of extracting knowledge directly from data that could support decisions in multiple fields of engineering [...].
Collapse
Affiliation(s)
- Giuseppe Cesarelli
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (A.M.P.); (M.S.); (F.A.); (C.R.)
| | - Alfonso Maria Ponsiglione
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (A.M.P.); (M.S.); (F.A.); (C.R.)
| | - Mario Sansone
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (A.M.P.); (M.S.); (F.A.); (C.R.)
| | - Francesco Amato
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (A.M.P.); (M.S.); (F.A.); (C.R.)
| | - Leandro Donisi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy;
| | - Carlo Ricciardi
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (A.M.P.); (M.S.); (F.A.); (C.R.)
| |
Collapse
|
3
|
Raju SMTU, Dipto SA, Hossain MI, Chowdhury MAS, Haque F, Nashrah AT, Nishan A, Khan MMH, Hashem MMA. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model. Med Biol Eng Comput 2024:10.1007/s11517-024-03157-1. [PMID: 38963467 DOI: 10.1007/s11517-024-03157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Continuous blood pressure (BP) provides essential information for monitoring one's health condition. However, BP is currently monitored using uncomfortable cuff-based devices, which does not support continuous BP monitoring. This paper aims to introduce a blood pressure monitoring algorithm based on only photoplethysmography (PPG) signals using the deep neural network (DNN). The PPG signals are obtained from 125 unique subjects with 218 records and filtered using signal processing algorithms to reduce the effects of noise, such as baseline wandering, and motion artifacts. The proposed algorithm is based on pulse wave analysis of PPG signals, extracted various domain features from PPG signals, and mapped them to BP values. Four feature selection methods are applied and yielded four feature subsets. Therefore, an ensemble feature selection technique is proposed to obtain the optimal feature set based on major voting scores from four feature subsets. DNN models, along with the ensemble feature selection technique, outperformed in estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) compared to previously reported approaches that rely only on the PPG signal. The coefficient of determination ( R 2 ) and mean absolute error (MAE) of the proposed algorithm are 0.962 and 2.480 mmHg, respectively, for SBP and 0.955 and 1.499 mmHg, respectively, for DBP. The proposed approach meets the Advancement of Medical Instrumentation standard for SBP and DBP estimations. Additionally, according to the British Hypertension Society standard, the results attained Grade A for both SBP and DBP estimations. It concludes that BP can be estimated more accurately using the optimal feature set and DNN models. The proposed algorithm has the potential ability to facilitate mobile healthcare devices to monitor continuous BP.
Collapse
Affiliation(s)
- S M Taslim Uddin Raju
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
| | - Safin Ahmed Dipto
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Imran Hossain
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Abu Shahid Chowdhury
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Fabliha Haque
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Ayesha Tun Nashrah
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Araf Nishan
- Department of Business Administration, International American University, Los Angeles, CA, 90010, USA
| | - Md Mahamudul Hasan Khan
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - M M A Hashem
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
4
|
Alam J, Khan MF, Khan MA, Singh R, Mundazeer M, Kumar P. A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG). J Cardiovasc Transl Res 2024; 17:669-684. [PMID: 38010481 DOI: 10.1007/s12265-023-10462-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference.
Collapse
Affiliation(s)
- Javed Alam
- Quantlase Lab LLC, Masdar City, Abu Dhabi, United Arab Emirates.
| | | | - Meraj Alam Khan
- Quantlase Lab LLC, Masdar City, Abu Dhabi, United Arab Emirates
- DigiBiomics Inc, Mississauga, Ontario, Canada
| | - Rinky Singh
- Quantlase Lab LLC, Masdar City, Abu Dhabi, United Arab Emirates
| | | | - Pramod Kumar
- Quantlase Lab LLC, Masdar City, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Victor OA, Chen Y, Ding X. Non-Invasive Heart Failure Evaluation Using Machine Learning Algorithms. SENSORS (BASEL, SWITZERLAND) 2024; 24:2248. [PMID: 38610459 PMCID: PMC11014006 DOI: 10.3390/s24072248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Heart failure is a prevalent cardiovascular condition with significant health implications, necessitating effective diagnostic strategies for timely intervention. This study explores the potential of continuous monitoring of non-invasive signals, specifically integrating photoplethysmogram (PPG) and electrocardiogram (ECG), for enhancing early detection and diagnosis of heart failure. Leveraging a dataset from the MIMIC-III database, encompassing 682 heart failure patients and 954 controls, our approach focuses on continuous, non-invasive monitoring. Key features, including the QRS interval, RR interval, augmentation index, heart rate, systolic pressure, diastolic pressure, and peak-to-peak amplitude, were carefully selected for their clinical relevance and ability to capture cardiovascular dynamics. This feature selection not only highlighted important physiological indicators but also helped reduce computational complexity and the risk of overfitting in machine learning models. The use of these features in training machine learning algorithms led to a model with impressive accuracy (98%), sensitivity (97.60%), specificity (96.90%), and precision (97.20%). Our integrated approach, combining PPG and ECG signals, demonstrates superior performance compared to single-signal strategies, emphasizing its potential in early and precise heart failure diagnosis. The study also highlights the importance of continuous monitoring with wearable technology, suggesting a significant stride forward in non-invasive cardiovascular health assessment. The proposed approach holds promise for implementation in hardware systems to enable continuous monitoring, aiding in early detection and prevention of critical health conditions.
Collapse
Affiliation(s)
| | | | - Xiaorong Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (O.A.V.); (Y.C.)
| |
Collapse
|
6
|
Mahardika T NQ, Fuadah YN, Jeong DU, Lim KM. PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN-LSTM. Diagnostics (Basel) 2023; 13:2566. [PMID: 37568929 PMCID: PMC10417316 DOI: 10.3390/diagnostics13152566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Researchers commonly use continuous noninvasive blood-pressure measurement (cNIBP) based on photoplethysmography (PPG) signals to monitor blood pressure conveniently. However, the performance of the system still needs to be improved. Accuracy and precision in blood-pressure measurements are critical factors in diagnosing and managing patients' health conditions. Therefore, we propose a convolutional long short-term memory neural network (CNN-LSTM) with grid search ability, which provides a robust blood-pressure estimation system by extracting meaningful information from PPG signals and reducing the complexity of hyperparameter optimization in the proposed model. The multiparameter intelligent monitoring for intensive care III (MIMIC III) dataset obtained PPG and arterial-blood-pressure (ABP) signals. We obtained 75,226 signal segments, with 60,180 signals allocated for training data, 12,030 signals allocated for the validation set, and 15,045 signals allocated for the test data. During training, we applied five-fold cross-validation with a grid-search method to select the best model and determine the optimal hyperparameter settings. The optimized configuration of the CNN-LSTM layers consisted of five convolutional layers, one long short-term memory (LSTM) layer, and two fully connected layers for blood-pressure estimation. This study successfully achieved good accuracy in assessing both systolic blood pressure (SBP) and diastolic blood pressure (DBP) by calculating the standard deviation (SD) and the mean absolute error (MAE), resulting in values of 7.89 ± 3.79 and 5.34 ± 2.89 mmHg, respectively. The optimal configuration of the CNN-LSTM provided satisfactory performance according to the standards set by the British Hypertension Society (BHS), the Association for the Advancement of Medical Instrumentation (AAMI), and the Institute of Electrical and Electronics Engineers (IEEE) for blood-pressure monitoring devices.
Collapse
Affiliation(s)
- Nurul Qashri Mahardika T
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea; (N.Q.M.T.); (Y.N.F.); (D.U.J.)
| | - Yunendah Nur Fuadah
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea; (N.Q.M.T.); (Y.N.F.); (D.U.J.)
- School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia
| | - Da Un Jeong
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea; (N.Q.M.T.); (Y.N.F.); (D.U.J.)
| | - Ki Moo Lim
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea; (N.Q.M.T.); (Y.N.F.); (D.U.J.)
- Computational Medicine Lab, Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea
- Meta Heart Co., Ltd., Gumi 39177, Gyeongbuk, Republic of Korea
| |
Collapse
|
7
|
Guo CY, Perng JW, Chen LC, Hsieh TL. A Hemodynamic Pulse Wave Simulator Designed for Calibration of Local Pulse Wave Velocities Measurement for Cuffless Techniques. MICROMACHINES 2023; 14:1218. [PMID: 37374803 PMCID: PMC10305378 DOI: 10.3390/mi14061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Devices for cuffless blood pressure (BP) measurement have become increasingly widespread in recent years. Non-invasive continuous BP monitor (BPM) devices can diagnose potential hypertensive patients at an early stage; however, these cuffless BPMs require more reliable pulse wave simulation equipment and verification methods. Therefore, we propose a device to simulate human pulse wave signals that can test the accuracy of cuffless BPM devices using pulse wave velocity (PWV). METHODS We design and develop a simulator capable of simulating human pulse waves comprising an electromechanical system to simulate the circulatory system and an arm model-embedded arterial phantom. These parts form a pulse wave simulator with hemodynamic characteristics. We use a cuffless device for measuring local PWV as the device under test to measure the PWV of the pulse wave simulator. We then use a hemodynamic model to fit the cuffless BPM and pulse wave simulator results; this model can rapidly calibrate the cuffless BPM's hemodynamic measurement performance. RESULTS We first used multiple linear regression (MLR) to generate a cuffless BPM calibration model and then investigated differences between the measured PWV with and without MLR model calibration. The mean absolute error of the studied cuffless BPM without the MLR model is 0.77 m/s, which improves to 0.06 m/s when using the model for calibration. The measurement error of the cuffless BPM at BPs of 100-180 mmHg is 1.7-5.99 mmHg before calibration, which decreases to 0.14-0.48 mmHg after calibration. CONCLUSION This study proposes a design of a pulse wave simulator based on hemodynamic characteristics and provides a standard performance verification method for cuffless BPMs that requires only MLR modeling on the cuffless BPM and pulse wave simulator. The pulse wave simulator proposed in this study can be used to quantitively assess the performance of cuffless BPMs. The proposed pulse wave simulator is suitable for mass production for the verification of cuffless BPMs. As cuffless BPMs become increasingly widespread, this study can provide performance testing standards for cuffless devices.
Collapse
Affiliation(s)
- Cheng-Yan Guo
- Accurate Meditech Inc., New Taipei City 241406, Taiwan;
| | - Jau-Woei Perng
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 80424, Taiwan;
| | - Li-Ching Chen
- LAICA International Corp, New Taipei City 231, Taiwan;
| | - Tung-Li Hsieh
- Department of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
8
|
Samimi H, Dajani HR. A PPG-Based Calibration-Free Cuffless Blood Pressure Estimation Method Using Cardiovascular Dynamics. SENSORS (BASEL, SWITZERLAND) 2023; 23:4145. [PMID: 37112490 PMCID: PMC10146008 DOI: 10.3390/s23084145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Traditional cuff-based sphygmomanometers for measuring blood pressure can be uncomfortable and particularly unsuitable to use during sleep. A proposed alternative method uses dynamic changes in the pulse waveform over short intervals and replaces calibration with information from photoplethysmogram (PPG) morphology to provide a calibration-free approach using a single sensor. Results from 30 patients show a high correlation of 73.64% for systolic blood pressure (SBP) and 77.72% for diastolic blood pressure (DBP) between blood pressure estimated with the PPG morphology features and the calibration method. This suggests that the PPG morphology features could replace the calibration stage for a calibration-free method with similar accuracy. Applying the proposed methodology on 200 patients and testing on 25 new patients resulted in a mean error (ME) of -0.31 mmHg, a standard deviation of error (SDE) of 4.89 mmHg, a mean absolute error (MAE) of 3.32 mmHg for DBP and an ME of -4.02 mmHg, an SDE of 10.40 mmHg, and an MAE of 7.41 mmHg for SBP. These results support the potential for using a PPG signal for calibration-free cuffless blood pressure estimation and improving accuracy by adding information from cardiovascular dynamics to different methods in the cuffless blood pressure monitoring field.
Collapse
|
9
|
Qin C, Li Y, Liu C, Ma X. Cuff-Less Blood Pressure Prediction Based on Photoplethysmography and Modified ResNet. Bioengineering (Basel) 2023; 10:bioengineering10040400. [PMID: 37106587 PMCID: PMC10135940 DOI: 10.3390/bioengineering10040400] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular disease (CVD) has become a common health problem of mankind, and the prevalence and mortality of CVD are rising on a year-to-year basis. Blood pressure (BP) is an important physiological parameter of the human body and also an important physiological indicator for the prevention and treatment of CVD. Existing intermittent measurement methods do not fully indicate the real BP status of the human body and cannot get rid of the restraining feeling of a cuff. Accordingly, this study proposed a deep learning network based on the ResNet34 framework for continuous prediction of BP using only the promising PPG signal. The high-quality PPG signals were first passed through a multi-scale feature extraction module after a series of pre-processing to expand the perceptive field and enhance the perception ability on features. Subsequently, useful feature information was then extracted by stacking multiple residual modules with channel attention to increase the accuracy of the model. Lastly, in the training stage, the Huber loss function was adopted to stabilize the iterative process and obtain the optimal solution of the model. On a subset of the MIMIC dataset, the errors of both SBP and DBP predicted by the model met the AAMI standards, while the accuracy of DBP reached Grade A of the BHS standard, and the accuracy of SBP almost reached Grade A of the BHS standard. The proposed method verifies the potential and feasibility of PPG signals combined with deep neural networks in the field of continuous BP monitoring. Furthermore, the method is easy to deploy in portable devices, and it is more consistent with the future trend of wearable blood-pressure-monitoring devices (e.g., smartphones and smartwatches).
Collapse
Affiliation(s)
- Caijie Qin
- Institute of Information Engineering, Sanming University, Sanming 365004, China
- CBSR&NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- Institute of Information Engineering, Sanming University, Sanming 365004, China
| | - Chibiao Liu
- Institute of Information Engineering, Sanming University, Sanming 365004, China
| | - Xibo Ma
- CBSR&NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Roy D, Mazumder O, Jaiswal D, Ghose A, Khandelwal S, Mandana K, Sinha A. In-silico cardiovascular hemodynamic model to simulate the effect of physical exercise. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|