1
|
Xu Z, Wang J, Gao L, Zhang W. Hydrogels in Alveolar Bone Regeneration. ACS Biomater Sci Eng 2024; 10:7337-7351. [PMID: 39571179 DOI: 10.1021/acsbiomaterials.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Alveolar bone defects caused by oral trauma, alveolar fenestration, periodontal disease, and congenital malformations can severely affect oral function and facial aesthetics. Despite the successful clinical applications of bone grafts or bone substitutes, optimal alveolar bone regeneration continues to be challenging due to the complex oral environment and its unique physiological functions. Hydrogels that serve as promising candidates for tissue regeneration are under development to meet the specific needs for increased bone regeneration capacity and improved operational efficiency in alveolar bone repair. In this review, we emphasize the considerations in hydrogel design for alveolar bone regeneration and summarize the latest applications of hydrogels in prevalent clinical diseases related to alveolar bone defects. The future perspectives and challenges for the application of hydrogels in the field of alveolar bone regeneration are also discussed. Deepening our understanding of these biomaterials will facilitate the advent of novel inventions to improve the outcome of alveolar bone tissue regeneration.
Collapse
Affiliation(s)
- Zhuoran Xu
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Junyi Wang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Liheng Gao
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
2
|
He S, Niu W, Li ZA. Stem and Progenitor Cells for Musculoskeletal Disease Modeling and Tissue Repair. Bioengineering (Basel) 2024; 11:1175. [PMID: 39767993 PMCID: PMC11673979 DOI: 10.3390/bioengineering11121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Musculoskeletal conditions such as osteoarthritis (OA), bone fracture, and sarcopenia are highly prevalent [...].
Collapse
Affiliation(s)
- Songlin He
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR 999077, China;
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR 999077, China
| | - Wanting Niu
- Tissue Engineering Labs, VA Boston Healthcare System & Department of Orthopedics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR 999077, China;
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR 999077, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR 999077, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Omidian H, Chowdhury SD, Wilson RL. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024; 10:238. [PMID: 38667657 PMCID: PMC11049258 DOI: 10.3390/gels10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success. It also explores the integration of cutting-edge technologies like 3D bioprinting and biofabrication in constructing complex tissue structures, alongside innovative materials and techniques aimed at enhancing tissue growth and functionality. Through a detailed examination of these efforts, the manuscript sheds light on the potential of hydrogels in advancing regenerative medicine and the necessity for multidisciplinary collaboration to navigate the challenges ahead.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (R.L.W.)
| | | | | |
Collapse
|
4
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
5
|
Huo Z, Wu F, Lu G, Huang F. Combination effect of Chinese kidney-tonifying granules and platelet-rich plasma gels on enhancing bone healing in rat models with femur defects. J Orthop Surg Res 2023; 18:975. [PMID: 38114998 PMCID: PMC10729433 DOI: 10.1186/s13018-023-04468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The traditional Chinese kidney-tonifying granules, known as Bushen Zhongyao Keli (BSZYKL), have been found to stimulate calcium salt deposition, enhance bone formation, and foster bone growth within the bone matrix at sites of bone defects. On the other hand, platelet-rich plasma (PRP) is enriched with various growth factors capable of facilitating the repair of bone defects and enhancing bone strength following fractures. This study is dedicated to investigating the combined efficacy of BSZYKL and PRP gel (PRP-G) in the treatment of bone defects. METHODS We established a femur defect model in male Sprague-Dawley (SD) rats and filled the defect areas with autologous coccygeal bone and PRP-G. For 8 consecutive weeks, those rats were given with intragastric administration of BSZYKL. Biomechanical characteristics of the femur were assessed 28 days after intramuscular administration. On day 56, bone formation was examined using X-ray, micro-CT, and transmission electron microscopy. Additionally, we analyzed the expression of bone formation markers, Runx2 and Osterix, in femur tissues through qPCR, Western blotting, and immunohistochemistry. RESULTS Rats receiving the combined treatment of BSZYKL and PRP-G exhibited drastically enhanced femoral peak torsion, failure angle, energy absorption capacity, and torsional stiffness as compared to control group. This combination therapy also led to marked improvements in bone volume, mass, and microarchitecture, accompanied by elevated expressions of Runx2 and Osterix when compared to control group. Notably, the synergistic effects of BSZYKL and PRP-G in treating bone defects surpassed the effects of either treatment alone. CONCLUSIONS These findings revealed the potential of BSZYKL in combination with PRP-G in improving bone defects.
Collapse
Affiliation(s)
- Zhiqian Huo
- Major in Orthopaedics of Traditional Chinese Medicine, The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
- Sixth Department of Orthopedics & Traumatology, Foshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
- Prestigious Chinese Medicine Expert of Guangdong Province Xu Zhiqiang Inheritance Studio, Foshan, 528000, Guangdong Province, China
| | - Feng Wu
- Sixth Department of Orthopedics & Traumatology, Foshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Guoliang Lu
- Sixth Department of Orthopedics & Traumatology, Foshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Feng Huang
- Major in Orthopaedics of Traditional Chinese Medicine, The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
6
|
Nitti P, Narayanan A, Pellegrino R, Villani S, Madaghiele M, Demitri C. Cell-Tissue Interaction: The Biomimetic Approach to Design Tissue Engineered Biomaterials. Bioengineering (Basel) 2023; 10:1122. [PMID: 37892852 PMCID: PMC10604880 DOI: 10.3390/bioengineering10101122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The advancement achieved in Tissue Engineering is based on a careful and in-depth study of cell-tissue interactions. The choice of a specific biomaterial in Tissue Engineering is fundamental, as it represents an interface for adherent cells in the creation of a microenvironment suitable for cell growth and differentiation. The knowledge of the biochemical and biophysical properties of the extracellular matrix is a useful tool for the optimization of polymeric scaffolds. This review aims to analyse the chemical, physical, and biological parameters on which are possible to act in Tissue Engineering for the optimization of polymeric scaffolds and the most recent progress presented in this field, including the novelty in the modification of the scaffolds' bulk and surface from a chemical and physical point of view to improve cell-biomaterial interaction. Moreover, we underline how understanding the impact of scaffolds on cell fate is of paramount importance for the successful advancement of Tissue Engineering. Finally, we conclude by reporting the future perspectives in this field in continuous development.
Collapse
Affiliation(s)
- Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.N.); (R.P.); (S.V.); (M.M.); (C.D.)
| | | | | | | | | | | |
Collapse
|
7
|
Song L, Yang X, Cui H. Plasma fibrin membranes loaded with bone marrow mesenchymal stem cells and corneal epithelial cells promote corneal injury healing via attenuating inflammation and fibrosis after corneal burns. Biomater Sci 2023; 11:5970-5983. [PMID: 37486330 DOI: 10.1039/d3bm00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The shortage of corneal donors has prompted the development of tissue-engineered corneal grafts as an alternative solution. Currently, amniotic membranes with good biocompatibility are widely used as scaffolds for loading stem cells in the treatment of corneal injury. However, this approach has its limitations. In this study, BMSCs were induced to differentiate into corneal epithelial cells via direct contact co-culture, and platelet-poor plasma was used to prepare fibrin gels, which were compressed to remove excess liquid and then lyophilized to obtain plasma fibrin membranes (PFMs). A tissue-engineered corneal implant with PFMs as a scaffold loaded with BMSCs and corneal epithelial cells was designed and obtained. Scanning electron microscopy showed that PFMs have a uniformly distributed microporous surface that facilitates cell attachment and nutrient transport. The rheological results showed that the freeze-dried and rehydrated PFMs were more rigid than fresh membranes, which makes it easier to use them for transplantation after cell loading. The experimental results of a rat alkali burn cornea injury model showed that PFMs effectively reduced the inflammatory reaction, inhibited fibrosis, and accelerated the healing of corneal wounds. It was also found that some of the BMSCs were successfully implanted into the corneal injury site in rats and differentiated into corneal epithelial cells. These results demonstrate the potential of tissue-engineered corneal implants using BMSCs and corneal epithelial cells and PFMs as scaffolds as a new treatment option for corneal injury.
Collapse
Affiliation(s)
- Liqun Song
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Xue Yang
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Huifei Cui
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- National Glycoengineering Research Center, Cheeloo College of Medicine, Shandon University, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry end Glycobiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|