1
|
Mahmood NMS, Mahmud AMR, Maulood IM. Melatonin attenuates responses to angiotensin II in isolated aortic rings of STZ-induced type 1-like DM rats. Endocr Res 2024:1-13. [PMID: 39719865 DOI: 10.1080/07435800.2024.2445264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND In patients with diabetes mellitus (DM), vascular endothelial dysfunction (VED) is the main reason for impaired life expectancy. Melatonin (MEL) demonstrates wide-ranging effects across various organs and exhibits pleiotropic characteristics. The current study aims to investigate the modulatory roles of MEL vascular response to angiotensin II (Ang II) and its receptors including angiotensin type 1 receptor (AT-1 R) and angiotensin type 2 receptor (AT-2 R) in isolated thoracic aorta of non-diabetes (non-DM) and diabetes (DM) rats. METHODS The thoracic aortae were isolated in order to investigate the influence of MEL on AT-1 R, using valsartan (VAL) and MT-2Rusing luzindole (LUZ) via dose-response curve (DRC) measurement of Ang II reactivity. In addition, AT-1 R was involved in this study, under PD123319 with ADInstrument organ bath (Panlab apparatus, Harvard University, USA). RESULTS The maximum response of Ang II was increased significantly in DM condition. In addition, AT-1 R was completely blocked under VAL, while AT-2 R was upregulated in the DM group. The combination of VAL and PD123319 led to abolishing the Ang II effect dramatically as well. Melatonin alone reduced Ang II in the DM group dramatically. This effect was also observed with MEL, PD1213319, and VAL combination, as well as, with MEL, LUZ, and PD1213319 combination. CONCLUSIONS Melatonin has been demonstrated to modulate both AT-1 R and AT-2 R and has influenced the reactivity of Ang II in the aortas of diabetic rats through highly complex mechanisms.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Mzimela N, Dimba N, Sosibo A, Khathi A. Evaluating the impact of type 2 diabetes mellitus on pulmonary vascular function and the development of pulmonary fibrosis. Front Endocrinol (Lausanne) 2024; 15:1431405. [PMID: 39050565 PMCID: PMC11266053 DOI: 10.3389/fendo.2024.1431405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) is a significant worldwide health concern caused by sedentary lifestyles and unhealthy diets. Beyond glycemic control, T2DM impacts multiple organ systems, leading to various complications. While traditionally associated with cardiovascular and microvascular complications, emerging evidence indicates significant effects on pulmonary health. Pulmonary vascular dysfunction and fibrosis, characterized by alterations in vascular tone and excessive extracellular matrix deposition, are increasingly recognized in individuals with T2DM. The onset of T2DM is often preceded by prediabetes, an intermediate hyperglycemic state that is associated with increased diabetes and cardiovascular disease risk. This review explores the relationship between T2DM, pulmonary vascular dysfunction and pulmonary fibrosis, with a focus on potential links with prediabetes. Pulmonary vascular function, including the roles of nitric oxide (NO), prostacyclin (PGI2), endothelin-1 (ET-1), thromboxane A2 (TxA2) and thrombospondin-1 (THBS1), is discussed in the context of T2DM and prediabetes. Mechanisms linking T2DM to pulmonary fibrosis, such as oxidative stress, dysregulated fibrotic signaling, and chronic inflammation, are explained. The impact of prediabetes on pulmonary health, including endothelial dysfunction, oxidative stress, and dysregulated vasoactive mediators, is highlighted. Early detection and intervention during the prediabetic stage may reduce respiratory complications associated with T2DM, emphasizing the importance of management strategies targeting blood glucose regulation and vascular health. More research that looks into the mechanisms underlying pulmonary complications in T2DM and prediabetes is needed.
Collapse
Affiliation(s)
- Nhlakanipho Mzimela
- Department of Human Physiology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | |
Collapse
|
3
|
Lemini C, Silveyra P, Segovia-Mendoza M. Cardiovascular disrupting effects of bisphenols, phthalates, and parabens related to endothelial dysfunction: Review of toxicological and pharmacological mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104407. [PMID: 38428705 DOI: 10.1016/j.etap.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are promoted by the accumulation of lipids and immune cells in the endothelial space resulting in endothelial dysfunction. Endothelial cells are important components of the vascular endothelium, that regulate the vascular flow. The imbalance in the production of vasoactive substances results in the loss of vascular homeostasis, leading the endothelial dysfunction. Thus, endothelial dysfunction plays an essential role in the development of atherosclerosis and can be triggered by different cardiovascular risk factors. On the other hand, the 17β-estradiol (E2) hormone has been related to the regulation of vascular tone through different mechanisms. Several compounds can elicit estrogenic actions similar to those of E2. For these reasons, they have been called endocrine-disrupting compounds (EDCs). This review aims to provide up-to-date information about how different EDCs affect endothelial function and their mechanistic roles in the context of CVDs.
Collapse
Affiliation(s)
- Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington, School of Public Health, Bloomington, IN, USA
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Batista PR, de Alencar Silva A, Mikevely de Sena Bastos C, de Souza Borges A, Dias FJ, Ramon Dos Santos Pereira L, Tavares de Sousa Machado S, de Araújo Delmondes G, Kerntopf MR, Alencar de Menezes IR, Barbosa R. Vasorelaxant effect of (E,E)-farnesol in human umbilical vein ex vivo assays. Chem Biol Interact 2023; 386:110746. [PMID: 37816450 DOI: 10.1016/j.cbi.2023.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
(E,E)-farnesol is a sesquiterpene acyclic alcohol produced by bacteria, protozoa, fungi, plants, and animals. The literature describes its applications in food, pharmaceutical, and cosmetic industries, and also in the pharmacological context with a vasorelaxant effect. However, its effects on human umbilical vessels remain poorly investigated. Thus, this study aims to investigate, in a new way, the vasorelaxant effect of (E,E)-farnesol in human umbilical veins (HUV) from healthy donors. Rings obtained from isolated HUV were suspended in an organ bath to record their isometric tension in different experimental sections. (E,E)-farnesol (1 μmol/L to 1 mmol/L) promoted vasorelaxant effect in venous preparations contracted by depolarization (KCl 60 mmol/L) or pharmacological agonism (5-HT 10 μmol/L), with EC50 values of 239.9 μmol/L and 424 μmol/L, respectively. In calcium-free solution, this effect was also observable. (E,E)-farnesol was able to suppress contractions evoked by CaCl2 and BaCl2 suggesting a blockade of voltage-dependent (especially L-type) calcium channels. The vasorelaxant efficacy and potency of (E,E)-farnesol were affected in the presence of tetraethylammonium (1 and 10 mmol/L), glibenclamide (10 μmol/L) and BaCl2 (1 mmol/L) indicating a possible involvement of potassium channels (BKCa, KATP and KIR) in this effect. Our data suggest that (E,E)-farnesol has a promising potential to be applicable as a vasodilator in hypertensive conditions in pregnancy that alter HUV reactivity.
Collapse
Affiliation(s)
- Paulo Ricardo Batista
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil; Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil.
| | - Andressa de Alencar Silva
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil; Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil.
| | - Carla Mikevely de Sena Bastos
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil; Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil.
| | - Alex de Souza Borges
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil; Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil.
| | - Francisco Junio Dias
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil.
| | - Luiz Ramon Dos Santos Pereira
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil.
| | - Sara Tavares de Sousa Machado
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil.
| | | | - Marta Regina Kerntopf
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil.
| | | | - Roseli Barbosa
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil; Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil.
| |
Collapse
|
5
|
Lorigo M, Mangana C, Cairrao E. Disrupting effects of the emerging contaminant octylmethoxycinnamate (OMC) on human umbilical artery relaxation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122302. [PMID: 37536478 DOI: 10.1016/j.envpol.2023.122302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Cardiovascular diseases (CVD) represent the number one cause of death worldwide. The vascular endothelium may play a role in the pathophysiology of CVD diseases. Octylmethoxycinnamate (OMC) is a UV-B filter (CAS number: 5466-77-3) widely used worldwide in numerous personal care products, including sunscreens, daily creams, and makeup. This UV-B filter is considered an endocrine disruptor. Therefore, this investigation aimed to evaluate the direct effects of OMC in human umbilical arteries (HUAs) with endothelium and the possible mechanisms involved in the response. The results demonstrated that OMC exerts a rapid (non-genomic) and endothelium-dependent arterial relaxant effect on HUAs previously contracted with serotonin (5-HT) and Histamine (His). On the other hand, when HUAs were contracted with potassium chloride (KCl), the relaxing effect was only observed in HUAs without endothelium, and it appeared to be inhibited in HUAs with endothelium. Thus, the vasorelaxant effect of OMC depends on the endothelium and depends on the contractile agent used, suggesting that OMC may act through different signaling pathways. Furthermore, computational modulation studies, corroborated the binding of OMC to all the proteins under investigation (eNOS, COX-2, ET-1, and TxA2), with higher affinity for COX-2. In summary, the vascular effect of OMC may involve activating different pathways, i.e., acting through the NO pathway, COX pathway, or activating the endothelin-1 pathway.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal.
| | - Carolina Mangana
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal.
| |
Collapse
|
6
|
Campos Pamplona C, Moers C, Leuvenink HGD, van Leeuwen LL. Expanding the Horizons of Pre-Transplant Renal Vascular Assessment Using Ex Vivo Perfusion. Curr Issues Mol Biol 2023; 45:5437-5459. [PMID: 37504261 PMCID: PMC10378498 DOI: 10.3390/cimb45070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Recently, immense efforts have focused on improving the preservation of (sub)optimal donor organs by means of ex vivo perfusion, which enables the opportunity for organ reconditioning and viability assessment. However, there is still no biomarker that correlates with renal viability. Therefore, it is essential to explore new techniques for pre-transplant assessment of organ quality to guarantee successful long-term transplantation outcomes. The renal vascular compartment has received little attention in machine perfusion studies. In vivo, proper renal vascular and endothelial function is essential for maintaining homeostasis and long-term graft survival. In an ex vivo setting, little is known about vascular viability and its implications for an organ's suitability for transplant. Seeing that endothelial damage is the first step in a cascade of disruptions and maintaining homeostasis is crucial for positive post-transplant outcomes, further research is key to clarifying the (patho)physiology of the renal vasculature during machine perfusion. In this review, we aim to summarize key aspects of renal vascular physiology, describe the role of the renal vasculature in pathophysiological settings, and explain how ex vivo perfusion plays a role in either unveiling or targeting such processes. Additionally, we discuss potentially new vascular assessment tools during ex vivo renal perfusion.
Collapse
Affiliation(s)
- Carolina Campos Pamplona
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - L Leonie van Leeuwen
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
7
|
Batista PR, Silva ADA, de Sena Bastos CM, Rodrigues da Silva RE, Calixto GL, de Morais LP, Delmondes GDA, Kerntopf MR, de Menezes IRA, Barbosa R. Vasodilation promoted by ( E, E)-farnesol involving ion channels in human umbilical arteries. Heliyon 2023; 9:e17328. [PMID: 37441374 PMCID: PMC10333471 DOI: 10.1016/j.heliyon.2023.e17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Background (E,E)-farnesol is a sesquiterpene alcohol derived from plants and animals that exhibits pharmacological properties in the cardiovascular system. However, its effects on human umbilical vessels remain unknown. Purpose Thus, this study aims to characterize the vasodilatory effect of (E,E)-farnesol in human umbilical arteries (HUA). Study design The tissue is obtained from pregnant women over 18 years of age, normotensive, and without prepartum complications. After collected, the tissue was segmented and dissected to remove Wharton's jelly and obtain the umbilical arteries segments. Methods HUA segments were isolated and sectioned into rings that were subjected to isometric tension recordings in an organ bath. Results (E,E)-farnesol (1 μmol/L to 1 mmol/L) promoted vasodilatory effect in HUA preparations, affecting basal tone, and inhibiting the electromechanical coupling induced by KCl 60 mmol/L with greater potency (EC50 225.3 μmol/L) than the pharmacomechanical coupling induced by 5-HT 10 μmol/L (EC50 363.5 μmol/L). In the absence of extracellular calcium, pharmacomechanical coupling was also abolished, and contractions induced by CaCl2 or BaCl2 were attenuated by (E,E)-farnesol indicating a possible direct inhibition of L-type VOCC as a mechanism of the vasodilatory effect. The vasodilator efficacy of (E,E)-farnesol on reduction of vasocontraction induced by the presence of tetraethylammonium (1 or 10 mmol/L), 4-aminopyridine (1 mmol/L) and glibenclamide (10 μmol/L) suggesting a possible influence of different potassium channels (BKCa, KV and KATP). Conclusion These results suggest that (E,E)-farnesol may be a promising pharmacological candidate for obstetric hypertensive disorders.
Collapse
Affiliation(s)
- Paulo Ricardo Batista
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Andressa de Alencar Silva
- Graduate Program in Physiological Sciences, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Carla Mikevely de Sena Bastos
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Renata Evaristo Rodrigues da Silva
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Gabriela Lucena Calixto
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | - Luís Pereira de Morais
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biotechnology By the Northeastern Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, 60714-903, Ceará, Brazil
| | | | - Marta Regina Kerntopf
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| | | | - Roseli Barbosa
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Pimenta Campus, Regional University of Cariri, Crato, 63105-000, Ceará, Brazil
| |
Collapse
|
8
|
Ragnoli B, Da Re B, Galantino A, Kette S, Salotti A, Malerba M. Interrelationship between COVID-19 and Coagulopathy: Pathophysiological and Clinical Evidence. Int J Mol Sci 2023; 24:ijms24108945. [PMID: 37240292 DOI: 10.3390/ijms24108945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Since the first description of COVID-19 infection, among clinical manifestations of the disease, including fever, dyspnea, cough, and fatigue, it was observed a high incidence of thromboembolic events potentially evolving towards acute respiratory distress syndrome (ARDS) and COVID-19-associated-coagulopathy (CAC). The hypercoagulation state is based on an interaction between thrombosis and inflammation. The so-called CAC represents a key aspect in the genesis of organ damage from SARS-CoV-2. The prothrombotic status of COVID-19 can be explained by the increase in coagulation levels of D-dimer, lymphocytes, fibrinogen, interleukin 6 (IL-6), and prothrombin time. Several mechanisms have been hypothesized to explain this hypercoagulable process such as inflammatory cytokine storm, platelet activation, endothelial dysfunction, and stasis for a long time. The purpose of this narrative review is to provide an overview of the current knowledge on the pathogenic mechanisms of coagulopathy that may characterize COVID-19 infection and inform on new areas of research. New vascular therapeutic strategies are also reviewed.
Collapse
Affiliation(s)
| | - Beatrice Da Re
- Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| | | | - Stefano Kette
- Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| | - Andrea Salotti
- Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| | - Mario Malerba
- Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
- Department of Traslational Medicine, University of Eastern Piedmont (UPO), 28100 Novara, Italy
| |
Collapse
|
9
|
Endocrine-Disrupting Effects of Bisphenol A on the Cardiovascular System: A Review. J Xenobiot 2022; 12:181-213. [PMID: 35893265 PMCID: PMC9326625 DOI: 10.3390/jox12030015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, the plastic monomer and plasticizer bisphenol A (BPA) is one of the most widely used chemicals. BPA is present in polycarbonate plastics and epoxy resins, commonly used in food storage and industrial or medical products. However, the use of this synthetic compound is a growing concern, as BPA is an endocrine-disrupting compound and can bind mainly to estrogen receptors, interfering with different functions at the cardiovascular level. Several studies have investigated the disruptive effects of BPA; however, its cardiotoxicity remains unclear. Therefore, this review’s purpose is to address the most recent studies on the implications of BPA on the cardiovascular system. Our findings suggest that BPA impairs cardiac excitability through intracellular mechanisms, involving the inhibition of the main ion channels, changes in Ca2+ handling, the induction of oxidative stress, and epigenetic modifications. Our data support that BPA exposure increases the risk of developing cardiovascular diseases (CVDs) including atherosclerosis and its risk factors such as hypertension and diabetes. Furthermore, BPA exposure is also particularly harmful in pregnancy, promoting the development of hypertensive disorders during pregnancy. In summary, BPA exposure compromises human health, promoting the development and progression of CVDs and risk factors. Further studies are needed to clarify the human health effects of BPA-induced cardiotoxicity.
Collapse
|
10
|
Mangiafico M, Caff A, Costanzo L. The Role of Heparin in COVID-19: An Update after Two Years of Pandemics. J Clin Med 2022; 11:jcm11113099. [PMID: 35683485 PMCID: PMC9180990 DOI: 10.3390/jcm11113099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with an increased risk of venous thromboembolism (VTE) and coagulopathy, especially in critically ill patients. Endothelial damage induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is emerging as a crucial pathogenetic mechanism for the development of complications in an acute phase of the illness and for several postdischarge sequalae. Heparin has been shown to have a positive impact on COVID-19 due to its anticoagulant function. Moreover, several other biological actions of heparin were postulated: a potential anti-inflammatory and antiviral effect through the main protease (Mpro) and heparansulfate (HS) binding and a protection from the damage of vascular endothelial cells. In this paper, we reviewed available evidence on heparin treatment in COVID-19 acute illness and chronic sequalae, focusing on the difference between prophylactic and therapeutic dosage.
Collapse
Affiliation(s)
- Marco Mangiafico
- Unit of Internal Medicine, Policlinico “G. Rodolico—San Marco”, 95100 Catania, Italy; (M.M.); (A.C.)
| | - Andrea Caff
- Unit of Internal Medicine, Policlinico “G. Rodolico—San Marco”, 95100 Catania, Italy; (M.M.); (A.C.)
| | - Luca Costanzo
- Unit of Angiology, Department of Cardio-Thoraco-Vascular, Policlinico “G. Rodolico—San Marco” University Hospital, University of Catania, 95100 Catania, Italy
- Correspondence:
| |
Collapse
|
11
|
Saenz-Medina J, Muñoz M, Rodriguez C, Sanchez A, Contreras C, Carballido-Rodríguez J, Prieto D. Endothelial Dysfunction: An Intermediate Clinical Feature between Urolithiasis and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020912. [PMID: 35055099 PMCID: PMC8778796 DOI: 10.3390/ijms23020912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED An epidemiological relationship between urolithiasis and cardiovascular diseases has extensively been reported. Endothelial dysfunction is an early pathogenic event in cardiovascular diseases and has been associated with oxidative stress and low chronic inflammation in hypertension, coronary heart disease, stroke or the vascular complications of diabetes and obesity. The aim of this study is to summarize the current knowledge about the pathogenic mechanisms of urolithiasis in relation to the development of endothelial dysfunction and cardiovascular morbidities. METHODS A non-systematic review has been performed mixing the terms "urolithiasis", "kidney stone" or "nephrolithiasis" with "cardiovascular disease", "myocardial infarction", "stroke", or "endothelial dysfunction". RESULTS Patients with nephrolithiasis develop a higher incidence of cardiovascular disease with a relative risk estimated between 1.20 and 1.24 and also develop a higher vascular disease risk scores. Analyses of subgroups have rendered inconclusive results regarding gender or age. Endothelial dysfunction has also been strongly associated with urolithiasis in clinical studies, although no systemic serum markers of endothelial dysfunction, inflammation or oxidative stress could be clearly related. Analysis of urine composition of lithiasic patients also detected a higher expression of proteins related to cardiovascular disease. Experimental models of hyperoxaluria have also found elevation of serum endothelial dysfunction markers. CONCLUSIONS Endothelial dysfunction has been strongly associated with urolithiasis and based on the experimental evidence, should be considered as an intermediate and changeable feature between urolithiasis and cardiovascular diseases. Oxidative stress, a key pathogenic factor in the development of endothelial dysfunction has been also pointed out as an important factor of lithogenesis. Special attention must be paid to cardiovascular morbidities associated with urolithiasis in order to take advantage of pleiotropic effects of statins, angiotensin receptor blockers and allopurinol.
Collapse
Affiliation(s)
- Javier Saenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain
- Department of Medical Specialities and Public Health, Faculty of Health Sciences, King Juan Carlos University, 28933 Móstoles, Spain
- Correspondence:
| | - Mercedes Muñoz
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Claudia Rodriguez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Ana Sanchez
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Cristina Contreras
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| | - Joaquín Carballido-Rodríguez
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, Autonoma University, 08193 Bellaterra, Spain;
| | - Dolores Prieto
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain; (M.M.); (C.R.); (A.S.); (C.C.); (D.P.)
| |
Collapse
|
12
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|