1
|
Iriarte LS, Martinez CI, de Miguel N, Coceres VM. Tritrichomonas foetus Cell Division Involves DNA Endoreplication and Multiple Fissions. Microbiol Spectr 2023; 11:e0325122. [PMID: 36728437 PMCID: PMC10100903 DOI: 10.1128/spectrum.03251-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Tritrichomonas foetus and Trichomonas vaginalis are extracellular flagellated parasites that inhabit animals and humans, respectively. Cell division is a crucial process in most living organisms that leads to the formation of 2 daughter cells from a single mother cell. It has been assumed that T. vaginalis and T. foetus modes of reproduction are exclusively by binary fission. However, here, we showed that multinuclearity is a phenomenon regularly observed in different T. foetus and T. vaginalis strains in standard culture conditions. Additionally, we revealed that nutritional depletion or nutritional deprivation led to different dormant phenotypes. Although multinucleated T. foetus are mostly observed during nutritional depletion, numerous cells with 1 larger nucleus have been observed under nutritional deprivation conditions. In both cases, when the standard culture media conditions are restored, the cytoplasm of these multinucleated cells separates, and numerous parasites are generated in a short period of time by the fission multiple. We also revealed that DNA endoreplication occurs both in large and multiple nuclei of parasites under nutritional deprivation and depletion conditions, suggesting an important function in stress nutritional situations. These results provide valuable data about the cell division process of these extracellular parasites. IMPORTANCE Nowadays, it's known that T. foetus and T. vaginalis generate daughter cells by binary fission. Here, we report that both parasites are also capable of dividing by multiple fission under stress conditions. We also demonstrated, for the first time, that T. foetus can increase its DNA content per parasite without concluding the cytokinesis process (endoreplication) under stress conditions, which represents an efficient strategy for subsequent fast multiplication when the context becomes favorable. Additionally, we revealed the existence of novel dormant forms of resistance (multinucleated or mononucleated polyploid parasites), different than the previously described pseudocysts, that are formed under stress conditions. Thus, it is necessary to evaluate the role of these structures in the parasites' transmission in the future.
Collapse
Affiliation(s)
- Lucrecia S. Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Cristian I. Martinez
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| | - Veronica M. Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martin (UNSAM), Buenos Aires, Argentina
| |
Collapse
|
2
|
Ihadjadene Y, Walther T, Krujatz F. Optimized Protocol for Microalgae DNA Staining with SYTO9/SYBR Green I, Based on Flow Cytometry and RSM Methodology: Experimental Design, Impacts and Validation. Methods Protoc 2022; 5:76. [PMID: 36287048 PMCID: PMC9612149 DOI: 10.3390/mps5050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple fluorochromes are extensively used to investigate different microalgal aspects, such as viability and physiology. Some of them can be used to stain nucleic acids (DNA). Well-known examples are SYBR Green I and SYTO 9, the latter of which offers several advantages, especially when combined with flow cytometry (FCM)—a powerful method for studying microalgal population heterogeneity and analyzing their cell cycles. However, the effects of these dyes on the microalgae cell physiology have not been fully elucidated yet. A statistical experimental design, using response surface methodology (RSM) with FCM was applied in this study to optimize the DNA staining of a non-conventional microalgae, Chromochloris zofingiensis, with SYBR Green I and SYTO 9, and to optimize the variables affecting staining efficiency, i.e., the dye concentration, incubation time and staining temperature. We found that none of these factors affects the staining efficiency, which was not less than 99.65%. However, for both dyes, the dye concentration was shown to be the most significant factor causing cell damage (p-values: 0.0003; <0.0001) for SYBR Green I and SYTO 9, respectively. The staining temperature was only significant for SYTO 9 (p-value: 0.0082), and no significant effect was observed regarding the incubation time for both dyes. The values of the optimized parameters (0.5 µM, 05 min and 25 °C) for SYTO 9 and (0.5 X, 5 min and 25 °C) for SYBR Green I resulted in the maximum staining efficiency (99.8%; 99.6%), and the minimum damaging effects (12.86%; 13.75%) for SYTO 9 and SYBR Green I, respectively. These results offer new perspectives for improving the use of DNA staining fluorochromes and provides insights into their possible side effects on microalgae.
Collapse
Affiliation(s)
- Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
- Biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763 Zittau, Germany
| |
Collapse
|
3
|
Wood EE, Ross ME, Jubeau S, Montalescot V, Stanley MS. Progress towards a targeted biorefinery of Chromochloris zofingiensis: a review. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:8127-8152. [PMID: 38510795 PMCID: PMC10948469 DOI: 10.1007/s13399-022-02955-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 03/22/2024]
Abstract
Biorefinery approaches offer the potential to improve the economics of the microalgae industry by producing multiple products from a single source of biomass. Chromochloris zofingiensis shows great promise for biorefinery due to high biomass productivity and a diverse range of products including secondary carotenoids, predominantly astaxanthin; lipids such as TAGs; carbohydrates including starch; and proteins and essential amino acids. Whilst this species has been demonstrated to accumulate multiple products, the development of an integrated downstream process to obtain these is lacking. The objective of this review paper is to assess the research that has taken place and to identify the steps that must be taken to establish a biorefinery approach for C. zofingiensis. In particular, the reasons why C. zofingiensis is a promising species to target for biorefinery are discussed in terms of cellular structure, potential products, and means to accumulate desirable components via the alteration of culture conditions. Future advances and the challenges that lie ahead for successful biorefinery of this species are also reviewed along with potential solutions to address them. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-02955-7.
Collapse
Affiliation(s)
- Eleanor E. Wood
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
- Xanthella Ltd, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ Scotland, UK
| | - Michael E. Ross
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
| | - Sébastien Jubeau
- Xanthella Ltd, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ Scotland, UK
| | | | - Michele S. Stanley
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
| |
Collapse
|
4
|
Morales-de la Cruz X, Mandujano-Chávez A, Browne DR, Devarenne TP, Sánchez-Segura L, López MG, Lozoya-Gloria E. In Silico and Cellular Differences Related to the Cell Division Process between the A and B Races of the Colonial Microalga Botryococcus braunii. Biomolecules 2021; 11:biom11101463. [PMID: 34680096 PMCID: PMC8533097 DOI: 10.3390/biom11101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022] Open
Abstract
Botryococcus braunii produce liquid hydrocarbons able to be processed into combustion engine fuels. Depending on the growing conditions, the cell doubling time can be up to 6 days or more, which is a slow growth rate in comparison with other microalgae. Few studies have analyzed the cell cycle of B. braunii. We did a bioinformatic comparison between the protein sequences for retinoblastoma and cyclin-dependent kinases from the A (Yamanaka) and B (Showa) races, with those sequences from other algae and Arabidopsis thaliana. Differences in the number of cyclin-dependent kinases and potential retinoblastoma phosphorylation sites between the A and B races were found. Some cyclin-dependent kinases from both races seemed to be phylogenetically more similar to A. thaliana than to other microalgae. Microscopic observations were done using several staining procedures. Race A colonies, but not race B, showed some multinucleated cells without chlorophyll. An active mitochondrial net was detected in those multinucleated cells, as well as being defined in polyphosphate bodies. These observations suggest differences in the cell division processes between the A and B races of B. braunii.
Collapse
Affiliation(s)
- Xochitl Morales-de la Cruz
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
| | | | - Daniel R. Browne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (D.R.B.); (T.P.D.)
- Pacific Biosciences, Chicago, IL 60606, USA
| | - Timothy P. Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (D.R.B.); (T.P.D.)
| | - Lino Sánchez-Segura
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
| | - Mercedes G. López
- Biochemistry and Biotechnology Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico;
| | - Edmundo Lozoya-Gloria
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (X.M.-d.l.C.); (L.S.-S.)
- Correspondence: ; Tel.: +52-462-6239659
| |
Collapse
|
5
|
Zhang Y, Ye Y, Bai F, Liu J. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:119. [PMID: 33992124 PMCID: PMC8126118 DOI: 10.1186/s13068-021-01969-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefits and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofingiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofingiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofingiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofingiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways. Furthermore, strategies for trait improvements are discussed regarding triacylglycerol and astaxanthin synthesis in C. zofingiensis.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|