1
|
Klinngam W, Rungkamoltip P, Wongwanakul R, Joothamongkhon J, Du-A-Man S, Khongkow M, Asawapirom U, Iempridee T, Ruktanonchai U. Skin Rejuvenation Efficacy and Safety Evaluation of Kaempferia parviflora Standardized Extract (BG100) in Human 3D Skin Models and Clinical Trial. Biomolecules 2024; 14:776. [PMID: 39062490 PMCID: PMC11274994 DOI: 10.3390/biom14070776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
Polymethoxyflavones from Kaempferia parviflora rhizomes have been shown to effectively combat aging in skin cells and tissues by inhibiting senescence, reducing oxidative stress, and enhancing skin structure and function. This study assessed the anti-aging effects and safety of standardized K. parviflora extract (BG100), enriched with polymethoxyflavones including 5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, 3,5,7,3',4'-pentamethoxyflavone, 3,5,7-trimethoxyflavone, and 3,5,7,4'-tetramethoxyflavone. We evaluated BG100's impact on skin rejuvenation and antioxidant properties using photoaged human 3D full-thickness skin models. The potential for skin irritation and sensitization was also assessed through studies on reconstructed human epidermis and clinical trials. Additionally, in vitro genotoxicity testing was performed following OECD guidelines. Results indicate that BG100 promotes collagen and hyaluronic acid production, reduces oxidative stress, and minimizes DNA damage in photoaged full-thickness 3D skin models. Furthermore, it exhibited non-irritating and non-sensitizing properties, as supported by tests on reconstructed human epidermis and clinical settings. BG100 also passed in vitro genotoxicity tests, adhering to OECD guidelines. These results underscore BG100's potential as a highly effective and safe, natural anti-aging agent, suitable for inclusion in cosmeceutical and nutraceutical products aimed at promoting skin rejuvenation.
Collapse
Affiliation(s)
- Wannita Klinngam
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Phetploy Rungkamoltip
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Ratjika Wongwanakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jaruwan Joothamongkhon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sakkarin Du-A-Man
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Udom Asawapirom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Lee HS, Jeon YE, Awa R, Yoshino S, Kim EJ. Kaempferia parviflora rhizome extract exerts anti-obesity effect in high-fat diet-induced obese C57BL/6N mice. Food Nutr Res 2023; 67:9413. [PMID: 37691744 PMCID: PMC10492229 DOI: 10.29219/fnr.v67.9413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 09/12/2023] Open
Abstract
Kaempferia parviflora (KP) rhizome, also called black ginger, has been used as a herbal medicine for many centuries. This current study was aimed at exploring whether KP rhizome extract (KPE) had anti-obesity effects and the mechanism involved. Five-week-old C57BL/6N male mice were allocated into five groups for 8-week feeding with control diet (CD), high-fat diet (HFD), HFD + 150 mg/kg body weight (BW)/day KPE (HFD+K150), HFD + 300 mg/kg BW/day KPE (HFD+K300), and HFD + 600 mg/kg BW/day KPE (HFD+K600). KPE decreased BW, body fat mass, adipose tissue weight, adipocyte size, and serum levels of glucose, triglycerides, cholesterol, insulin, and leptin in HFD-induced obese C57BL/6N mice. KPE inhibited adipogenesis by decreasing CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase 1, ATP-citrate lyase, and fatty acid synthase mRNA expression. KPE improved lipolysis by increasing carnitine palmitoyl transferase 1 and hormone-sensitive lipase mRNA expression. These results suggest that KPE may have inhibited HFD-induced obesity by regulating several pathways involved in decreasing adipogenesis and enhancing lipolysis. Thus, the results suggest that KPE (or KP) may be applicable as an anti-obesity agent.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan, Korea
| | - Young Eun Jeon
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon, Korea
| | - Riyo Awa
- Research Center, Maruzen Pharmaceuticals Co. Ltd., Hiroshima, Japan
| | - Susumu Yoshino
- Research Center, Maruzen Pharmaceuticals Co. Ltd., Hiroshima, Japan
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon, Korea
| |
Collapse
|
3
|
Temviriyanukul P, Chansawhang A, Karinchai J, Phochantachinda S, Buranasinsup S, Inthachat W, Pitchakarn P, Chantong B. Kaempferia parviflora Extracts Protect Neural Stem Cells from Amyloid Peptide-Mediated Inflammation in Co-Culture Model with Microglia. Nutrients 2023; 15:nu15051098. [PMID: 36904098 PMCID: PMC10004790 DOI: 10.3390/nu15051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The existence of neuroinflammation and oxidative stress surrounding amyloid beta (Aβ) plaques, a hallmark of Alzheimer's disease (AD), has been demonstrated and may result in the activation of neuronal death and inhibition of neurogenesis. Therefore, dysregulation of neuroinflammation and oxidative stress is one possible therapeutic target for AD. Kaempferia parviflora Wall. ex Baker (KP), a member of the Zingiberaceae family, possesses health-promoting benefits including anti-oxidative stress and anti-inflammation in vitro and in vivo with a high level of safety; however, the role of KP in suppressing Aβ-mediated neuroinflammation and neuronal differentiation has not yet been investigated. The neuroprotective effects of KP extract against Aβ42 have been examined in both monoculture and co-culture systems of mouse neuroectodermal (NE-4C) stem cells and BV-2 microglia cells. Our results showed that fractions of KP extract containing 5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone protected neural stem cells (both undifferentiated and differentiated) and microglia activation from Aβ42-induced neuroinflammation and oxidative stress in both monoculture and co-culture system of microglia and neuronal stem cells. Interestingly, KP extracts also prevented Aβ42-suppressed neurogenesis, possibly due to the contained methoxyflavone derivatives. Our data indicated the promising role of KP in treating AD through the suppression of neuroinflammation and oxidative stress induced by Aβ peptides.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.P.); (B.C.)
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: (P.P.); (B.C.)
| |
Collapse
|
4
|
Liao F, He D, Vong CT, Wang L, Chen Z, Zhang T, Luo H, Wang Y. Screening of the active Ingredients in Huanglian Jiedu decoction through amide bond-Immobilized magnetic nanoparticle-assisted cell membrane chromatography. Front Pharmacol 2022; 13:1087404. [PMID: 36642988 PMCID: PMC9837740 DOI: 10.3389/fphar.2022.1087404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: The Huanglian Jiedu decoction (HLJDD) is a Chinese herbal formula that exerts neuroprotective effects by alleviating oxidative stress injuries and may potentially be prescribed for treating Alzheimer's disease; however, its active ingredients have not yet been identified. Cell membrane chromatography is a high-throughput method for screening active ingredients, but traditional cell membrane chromatography requires multiple centrifugation steps, which affects its separation efficiency. Magnetic nanoparticles are unparalleled in solid-liquid separation and can overcome the shortcomings of traditional cell membrane chromatography. Methods: In this study, the neuroprotective effects of the components of HLJDD were screened through a novel magnetic nanoparticle-assisted cell membrane chromatography method. Magnetic nanoparticles and cell membranes were stably immobilized by amide bonds. Magnetic bead (MB)-immobilized cell membranes of HT-22 cells were incubated with the HLJDD extract to isolate specific binding components. The specific binding components were then identified by ultraperformance liquid chromatography (UPLC)-Orbitrap Fusion Tribrid MS after solid-phase extraction. The bioactivity of these components was analyzed in an HT-22 cellular model of glutamate-induced injury. Results and Discussion: The preparation method of the composite of cell membrane and MBs has the advantages of simple preparation and no introduction of toxic organic reagents. MBs not only provide support for cell membranes, but also greatly improve the separation efficiency compared with traditional cell membrane chromatography. Fifteen of these components were found to specifically bind to the cell membranes, and seven of them were confirmed to reduce varying degrees of glutamate-induced toxicity in HT-22 cells. In conclusion, our findings suggest that the amide bond-based immobilization of magnetic nanoparticles on cell membranes, along with solid-phase extraction and UPLC, is an effective method for isolating and discovering the bioactive components of traditional Chinese medicines.
Collapse
Affiliation(s)
- Fengyun Liao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China,The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongmei He
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lisheng Wang
- College of Chinese Material Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhangmei Chen
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tiejun Zhang
- Tianjin Engineering Laboratory of Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China,*Correspondence: Hua Luo, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China,*Correspondence: Hua Luo, ; Yitao Wang,
| |
Collapse
|
5
|
Klinngam W, Rungkamoltip P, Thongin S, Joothamongkhon J, Khumkhrong P, Khongkow M, Namdee K, Tepaamorndech S, Chaikul P, Kanlayavattanakul M, Lourith N, Piboonprai K, Ruktanonchai U, Asawapirom U, Iempridee T. Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomed Pharmacother 2021; 145:112461. [PMID: 34839253 DOI: 10.1016/j.biopha.2021.112461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Skin aging is accompanied by an increase in the number of senescent cells, resulting in various pathological outcomes. These include inflammation, impaired barrier function, and susceptibility to skin disorders such as cancer. Kaempferia parviflora (Thai black ginger), a medicinal plant native to Thailand, has been shown to counteract inflammation, cancer, and senescence. This study demonstrates that polymethoxyflavones (5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone) purified from K. parviflora rhizomes suppressed cellular senescence, reactive oxygen species, and the senescence-associated secretory phenotype in primary human dermal fibroblasts. In addition, they increased tropocollagen synthesis and alleviated free radical-induced cellular and mitochondrial damage. Moreover, the compounds mitigated chronological aging in a human ex vivo skin model by attenuating senescence and restoring expression of essential components of the extracellular matrix, including collagen type I, fibrillin-1, and hyaluronic acid. Finally, we report that polymethoxyflavones enhanced epidermal thickness and epidermal-dermal stability, while blocking age-related inflammation in skin explants. Our findings support the use of polymethoxyflavones from K. parviflora as natural anti-aging agents, highlighting their potential as active ingredients in cosmeceutical and nutraceutical products.
Collapse
Affiliation(s)
- Wannita Klinngam
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Phetploy Rungkamoltip
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Saowarose Thongin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jaruwan Joothamongkhon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Phattharachanok Khumkhrong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Surapun Tepaamorndech
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Puxvadee Chaikul
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand; School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mayuree Kanlayavattanakul
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand; School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Nattaya Lourith
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand; School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kitiya Piboonprai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Udom Asawapirom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand.
| |
Collapse
|
6
|
Sillapachaiyaporn C, Rangsinth P, Nilkhet S, Moungkote N, Chuchawankul S. HIV-1 Protease and Reverse Transcriptase Inhibitory Activities of Curcuma aeruginosa Roxb. Rhizome Extracts and the Phytochemical Profile Analysis: In Vitro and In Silico Screening. Pharmaceuticals (Basel) 2021; 14:ph14111115. [PMID: 34832897 PMCID: PMC8621417 DOI: 10.3390/ph14111115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection causes acquired immunodeficiency syndrome (AIDS). Currently, several anti-retroviral drugs are available, but adverse effects of these drugs have been reported. Herein, we focused on the anti-HIV-1 activity of Curcuma aeruginosa Roxb. (CA) extracted by hexane (CA-H), ethyl acetate (CA-EA), and methanol (CA-M). The in vitro HIV-1 protease (PR) and HIV-1 reverse transcriptase (RT) inhibitory activities of CA extracts were screened. CA-M potentially inhibited HIV-1 PR (82.44%) comparable to Pepstatin A (81.48%), followed by CA-EA (67.05%) and CA-H (47.6%), respectively. All extracts exhibited moderate inhibition of HIV-1 RT (64.97 to 76.93%). Besides, phytochemical constituents of CA extracts were identified by GC-MS and UPLC-HRMS. Fatty acids, amino acids, and terpenoids were the major compounds found in the extracts. Furthermore, drug-likeness parameters and the ability of CA-identified compounds on blocking of the HIV-1 PR and RT active sites were in silico investigated. Dihydroergocornine, 3β,6α,7α-trihydroxy-5β-cholan-24-oic acid, and 6β,11β,16α,17α,21-Pentahydroxypregna-1,4-diene-3,20-dione-16,17-acetonide showed strong binding affinities at the active residues of both HIV-1 PR and RT. Moreover, antioxidant activity of CA extracts was determined. CA-EA exhibited the highest antioxidant activity, which positively related to the amount of total phenolic content. This study provided beneficial data for anti-HIV-1 drug discovery from CA extracts.
Collapse
Affiliation(s)
- Chanin Sillapachaiyaporn
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (S.N.)
| | - Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (N.M.)
| | - Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (S.N.)
| | - Nuntanat Moungkote
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (N.M.)
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (N.M.)
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-1548
| |
Collapse
|