1
|
Klein S, Schulte A, Arolt C, Tolkach Y, Reinhardt HC, Buettner R, Quaas A. Intratumoral Abundance of M2-Macrophages is Associated With Unfavorable Prognosis and Markers of T-Cell Exhaustion in Small Cell Lung Cancer Patients. Mod Pathol 2023; 36:100272. [PMID: 37423586 DOI: 10.1016/j.modpat.2023.100272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
Small cell lung cancer (SCLC) accounts for about 10% to 15% of lung cancer cases. Unlike non-SCLC, therapy options for SCLC are limited, reflected by a 5-year survival rate of about 7%. At the same time, the rise of immunotherapeutic approaches in cancer therapy has rationalized to account for inflammatory phenotypes in tumors. However, the composition of the inflammatory microenvironment in human SCLC is poorly understood to date. In our study, we used in-depth image analysis of virtual whole-slide-images of 45 SCLC tumors and evaluated different markers of M2-macrophages (CD163 and CD204) together with global immunologic markers (CD4, CD8, CD68, CD38, FOXP3, and CD20) and characterized their abundance intratumorally using quantitative image analysis, combined with a deep-learning model for tumor segmentation. In addition, independent scoring, blinded to the results of the computational analysis, was performed by an expert pathologist (A.Q.) of both CD163/CD204 and PD-L1. To this end, we evaluated the prognostic relevance of the abundance of these cell types to overall survival. Given a 2-tier threshold of the median of the M2 marker CD163 within the study population, there was a 12-month overall survival rate of 22% (95% CI, 10%-47%) for patients with high CD163 abundance and 41% (95% CI, 25%-68%) for patients with low CD163 counts. Patients with increased CD163 had a median overall survival of 3 months compared to 8.34 months for patients with decreased CD163 counts (P = .039), which could be confirmed by an expert pathologist (A.Q., P = .018). By analyzing cases with increased CD163 cell infiltrates, a trend for higher FOXP3 counts and PD-L1 positive cells, together with increased CD8 T-cell infiltrates, was observed, which could be confirmed using an independent cohort at the transcriptional level. Together, we showed that markers of M2 were associated with unfavorable outcome in our study cohort.
Collapse
Affiliation(s)
- Sebastian Klein
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, and Center for Molecular Medicine, Cologne, Germany; Department of Hematology and Stem Cell Transplantation, University Duisburg-Essen, University Hospital Essen, Essen, Germany; West German Cancer Center Network, Partner Site Essen, Essen, Germany.
| | - Annalena Schulte
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, and Center for Molecular Medicine, Cologne, Germany
| | - Christoph Arolt
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, and Center for Molecular Medicine, Cologne, Germany
| | - Yuri Tolkach
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, and Center for Molecular Medicine, Cologne, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Duisburg-Essen, University Hospital Essen, Essen, Germany; West German Cancer Center Network, Partner Site Essen, Essen, Germany; German Cancer Consortium, Heidelberg, Germany
| | - Reinhard Buettner
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, and Center for Molecular Medicine, Cologne, Germany
| | - Alexander Quaas
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, and Center for Molecular Medicine, Cologne, Germany
| |
Collapse
|
2
|
Mahmoudian RA, Akhlaghipour I, Lotfi M, Shahidsales S, Moghbeli M. Circular RNAs as the pivotal regulators of epithelial-mesenchymal transition in gastrointestinal tumor cells. Pathol Res Pract 2023; 245:154472. [PMID: 37087995 DOI: 10.1016/j.prp.2023.154472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Gastrointestinal (GI) cancers, as the most common human malignancies are always considered one of the most important health challenges in the world. Late diagnosis in advanced tumor stages is one of the main reasons for the high mortality rate and treatment failure in these patients. Therefore, investigating the molecular pathways involved in GI tumor progression is required to introduce the efficient markers for the early tumor diagnosis. Epithelial-mesenchymal transition (EMT) is one of the main cellular mechanisms involved in the GI tumor metastasis. Non-coding RNAs (ncRNAs) are one of the main regulatory factors in EMT process. Circular RNAs (circRNAs) are a group of covalently closed loop ncRNAs that have higher stability in body fluids compared with other ncRNAs. Considering the importance of circRNAs in regulation of EMT process, in the present review we discussed the role of circRNAs in EMT process during GI tumor invasion. It has been reported that circRNAs mainly affect the EMT process through the regulation of EMT-specific transcription factors and signaling pathways such as WNT, PI3K/AKT, TGF-β, and MAPK. This review can be an effective step in introducing a circRNA/EMT based diagnostic panel marker for the early tumor detection among GI cancer patients.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zhang C, Xu L, Ma Y, Huang Y, Zhou L, Le H, Chen Z. Increased TIM-3 expression in tumor-associated macrophages predicts a poorer prognosis in non-small cell lung cancer: a retrospective cohort study. J Thorac Dis 2023; 15:1433-1444. [PMID: 37065598 PMCID: PMC10089863 DOI: 10.21037/jtd-23-227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Background T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) is considered a key negative regulator in T-cell-mediated response. However, few studies have been reported on the relationship between TIM-3 expression in tumor-associated macrophages (TAMs) and clinicopathological characteristics of patients. This study evaluated the correlation between the expression of TIM-3 on the surface of TAMs macrophages in tumor matrix and the clinical outcome of patients with non-small cell lung cancer (NSCLC). Methods The expression of CD68, CD163 and TIM-3 in 248 NSCLC patients who underwent surgery in Zhoushan Hospital from January 2010 to January 2013 was detected by immunohistochemistry (IHC). From the date of operation to the date of death, overall survival (OS) was measured to analyze the relationship between the expression of Tim-3 and the prognosis of NSCLC patients. Results The study assessed 248 patients with NSCLC. TIM-3 expression in TAMs was more frequently identified in patients with higher carcinoembryonic antigen (CEA) levels, lymph node metastasis, higher grade, high CD68 expression, and high CD163 expression (P<0.05). The OS of the high TIM-3 expression groups was shorter than that of the low TIM-3 expression groups (P=0.01). Patients with high TIM-3 and CD68/CD163 expressions had the worst prognosis, whereas patients with low expressions of both TIM-3 and CD68/CD163 had the best prognosis (P<0.05). In NSCLC, the OS of the high TIM-3 expression groups was shorter than that of the low TIM-3 expression groups (P=0.01). In lung adenocarcinoma, the OS of the high TIM-3 expression groups was shorter than that of the low TIM-3 expression groups(P=0.03). Conclusions TIM-3 expression in TAMs may be a promising prognostic biomarker for NSCLC or adenocarcinoma. Our results demonstrated that high TIM-3 expression in TAMs was an independent predictor of worse prognosis in patients.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
- Department of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Liyun Xu
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Yongbin Ma
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Yanyan Huang
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Lu Zhou
- Department of Cell Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Hanbo Le
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Zhijun Chen
- Department of Clinical Medicine, Jiamusi University, Jiamusi, China
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| |
Collapse
|
4
|
Dora D, Rivard C, Yu H, Pickard SL, Laszlo V, Harko T, Megyesfalvi Z, Gerdan C, Dinya E, Hoetzenecker K, Hirsch FR, Lohinai Z, Dome B. Protein Expression of immune checkpoints STING and MHCII in small cell lung cancer. Cancer Immunol Immunother 2023; 72:561-578. [PMID: 35978199 PMCID: PMC10991160 DOI: 10.1007/s00262-022-03270-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/28/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND SCLC is an aggressive malignancy where immunotherapies show limited efficacy. We aimed to characterize the SCLC microenvironment according to the expression patterns of SCLC subtype markers and novel immune checkpoints to identify therapeutic vulnerabilities. METHODS We included SCLC tissue samples from 219 surgically resected, limited-stage patients in this cross-sectional study. We performed immunohistochemistry for STING and MHCII, as well as for the novel subtype markers (ASCL1, NEUROD1, POU2F3, YAP1). Moreover, we assessed CD45 + , CD8 + and CD68 + immune cell infiltration. RESULTS 36% of SCLC tumors showed significant stromal or intraepithelial CD45 + immune cell infiltration. These patients exhibited significantly increased overall survival (OS) (vs. patients with immune-deserted tumors). High CD8 expression was associated with increased median OS. We found STING expression on cancer-associated fibroblasts in the stroma and on T-cells and macrophages in both tumorous and stromal compartments. STING expression positively correlated with immune cell infiltration. Increased STING-positivity in tumor nests was an independent favorable prognosticator for OS. ASCL1 was the most frequently expressed subtype-specific protein. Concomitant expression of three or four subtype-defining markers was seen in 13.8% of the included samples, whereas 24.1% of the cases were classified as quadruple negative tumors. YAP1 expression was associated with increased immune infiltrates. Tumor cell MHCII expression positively correlated with immune cell infiltration and with STING- and YAP1 expressions. CONCLUSIONS STING and MHCII are expressed in SCLC. The majority of immune-infiltrated SCLCs exhibit increased STING expression. Immune infiltration and STING expression are prognostic in limited-stage SCLC, making STING a potential therapeutic target.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shivaun Lueke Pickard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Viktoria Laszlo
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Tunde Harko
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
| | - Zsolt Megyesfalvi
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Csongor Gerdan
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Elek Dinya
- Institute of Digital Health Sciences, Faculty of Public Services, Semmelweis University, Budapest, Hungary
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Health System, New York, NY, USA
| | - Zoltan Lohinai
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary.
| | - Balazs Dome
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121, Piheno ut 1., Budapest, Hungary.
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Szegvari G, Dora D, Lohinai Z. Effective Reversal of Macrophage Polarization by Inhibitory Combinations Predicted by a Boolean Protein–Protein Interaction Model. BIOLOGY 2023; 12:biology12030376. [PMID: 36979068 PMCID: PMC10045914 DOI: 10.3390/biology12030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Background: The function and polarization of macrophages has a significant impact on the outcome of many diseases. Targeting tumor-associated macrophages (TAMs) is among the greatest challenges to solve because of the low in vitro reproducibility of the heterogeneous tumor microenvironment (TME). To create a more comprehensive model and to understand the inner workings of the macrophage and its dependence on extracellular signals driving polarization, we propose an in silico approach. Methods: A Boolean control network was built based on systematic manual curation of the scientific literature to model the early response events of macrophages by connecting extracellular signals (input) with gene transcription (output). The network consists of 106 nodes, classified as 9 input, 75 inner and 22 output nodes, that are connected by 217 edges. The direction and polarity of edges were manually verified and only included in the model if the literature plainly supported these parameters. Single or combinatory inhibitions were simulated mimicking therapeutic interventions, and output patterns were analyzed to interpret changes in polarization and cell function. Results: We show that inhibiting a single target is inadequate to modify an established polarization, and that in combination therapy, inhibiting numerous targets with individually small effects is frequently required. Our findings show the importance of JAK1, JAK3 and STAT6, and to a lesser extent STK4, Sp1 and Tyk2, in establishing an M1-like pro-inflammatory polarization, and NFAT5 in creating an anti-inflammatory M2-like phenotype. Conclusions: Here, we demonstrate a protein–protein interaction (PPI) network modeling the intracellular signalization driving macrophage polarization, offering the possibility of therapeutic repolarization and demonstrating evidence for multi-target methods.
Collapse
Affiliation(s)
- Gabor Szegvari
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.); Tel.: +36-1-2156920 (D.D.)
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- Pulmonary Hospital Torokbalint, 2045 Torokbalint, Hungary
- Correspondence: (D.D.); (Z.L.); Tel.: +36-1-2156920 (D.D.)
| |
Collapse
|
6
|
Dora D, Vörös I, Varga ZV, Takacs P, Teglasi V, Moldvay J, Lohinai Z. BRAF RNA is prognostic and widely expressed in lung adenocarcinoma. Transl Lung Cancer Res 2023; 12:27-41. [PMID: 36762067 PMCID: PMC9903089 DOI: 10.21037/tlcr-22-449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/24/2022] [Indexed: 01/15/2023]
Abstract
Background BRAF is a critical member of proliferation pathways in cancer, and a mutation is present in only 2-4% of lung adenocarcinomas (LADC). There is no data available on the expression pattern of BRAF RNA that might result in enhanced signalling and drug resistance. Methods LADC tissue samples (n=64) were fixed and processed into paraffin blocks. Tissue microarrays (TMA) were constructed, and RNAScope® in situ hybridization (ISH) assay was performed for wild-type (WT) BRAF RNA. Apart from pathological assessment of tumor samples (grade, necrosis, vascular involvement and peritumoral infiltration), anti-programmed death ligand 1 (PD-L1) and anti-programmed death 1 (PD-1) immunohistochemistry and validation in public databases [The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA)] were carried out. Results WT BRAF RNA is expressed in LADC, with no significant expressional difference between early-stage (I-II) and advanced-stage (III-IV) patients (P=0.317). Never smokers exhibited significantly increased BRAF expression (compared to current and ex-smokers, P<0.01) and tumor necrosis correlated significantly with BRAF expression (P=0.014). PD-L1 expression was assessed on tumor cells and immune cells, PD-1 expression was evaluated on immune cells. There was no significant difference in BRAF RNA expression between tumor cell PD-L1-high vs. low patients (P=0.124), but it was decreased in immune cell PD-L1-high patients (P=0.03). Kaplan-Meier survival analysis showed that high BRAF expression was associated with significantly decreased OS (P<0.01) and was an independent negative prognostic factor according to multivariate Cox hazard regression (P=0.024). TCGA validation cohort confirmed our findings regarding OS in early-stage patients (P=0.034). Conclusions We found an increased expression of BRAF RNA in all stages in LADC. High BRAF expression was associated with tumor necrosis, distinct immune checkpoint biology and outcomes. We recommend further evaluating the potential of targeting overexpressed BRAF pathways in LADC.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary;,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary;,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary;,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary;,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vanda Teglasi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Judit Moldvay
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
7
|
Kirk NA, Kim KB, Park KS. Effect of chromatin modifiers on the plasticity and immunogenicity of small-cell lung cancer. Exp Mol Med 2022; 54:2118-2127. [PMID: 36509828 PMCID: PMC9794818 DOI: 10.1038/s12276-022-00905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor genes (TSGs) are often involved in maintaining homeostasis. Loss of tumor suppressor functions causes cellular plasticity that drives numerous types of cancer, including small-cell lung cancer (SCLC), an aggressive type of lung cancer. SCLC is largely driven by numerous loss-of-function mutations in TSGs, often in those encoding chromatin modifiers. These mutations present a therapeutic challenge because they are not directly actionable. Alternatively, understanding the resulting molecular changes may provide insight into tumor intervention strategies. We hypothesize that despite the heterogeneous genomic landscape in SCLC, the impacts of mutations in patient tumors are related to a few important pathways causing malignancy. Specifically, alterations in chromatin modifiers result in transcriptional dysregulation, driving mutant cells toward a highly plastic state that renders them immune evasive and highly metastatic. This review will highlight studies in which imbalance of chromatin modifiers with opposing functions led to loss of immune recognition markers, effectively masking tumor cells from the immune system. This review also discusses the role of chromatin modifiers in maintaining neuroendocrine characteristics and the role of aberrant transcriptional control in promoting epithelial-to-mesenchymal transition during tumor development and progression. While these pathways are thought to be disparate, we highlight that the pathways often share molecular drivers and mediators. Understanding the relationships among frequently altered chromatin modifiers will provide valuable insights into the molecular mechanisms of SCLC development and progression and therefore may reveal preventive and therapeutic vulnerabilities of SCLC and other cancers with similar mutations.
Collapse
Affiliation(s)
- Nicole A. Kirk
- grid.27755.320000 0000 9136 933XDepartment of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Kee-Beom Kim
- grid.258803.40000 0001 0661 1556BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Kwon-Sik Park
- grid.27755.320000 0000 9136 933XDepartment of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
8
|
Guo W, Qiao T, Li T. The role of stem cells in small-cell lung cancer: evidence from chemoresistance to immunotherapy. Semin Cancer Biol 2022; 87:160-169. [PMID: 36371027 DOI: 10.1016/j.semcancer.2022.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Small cell lung cancer (SCLC) is the most aggressive subtype of lung cancer, accounting for approximately 15% among all lung cancers. Despite the ability of chemotherapy, the first-line treatment for SCLC, to rapidly shrink tumors, nearly all patients experience recurrence and metastasis within a few months. Cancer stem cells (CSCs) are a small population of tumor cells responsible for tumorigenesis, metastasis, and recurrence after treatment, which play a crucial role in chemoresistance by promoting DNA repair and expression of drug resistance-associated proteins. Thus, targeting CSCs has been successful in certain malignancies. Tumor therapy has entered the era of immunotherapy and numerous preclinical trials have demonstrated the effectiveness of immunotherapeutic approaches targeting CSCs, such as tumor vaccines and chimeric antigen receptor (CAR) T cell, and the feasibility of combining them with chemotherapy. Therefore, a deeper understanding of the interaction between CSCs and immune system is essential to facilitate the advances of new immunotherapies approaches targeting CSCs as well as combination with standard drugs such as chemotherapy. This narrative review summarizes the mechanisms of chemoresistance of CSCs in SCLC and the latest advances in targeted therapies. Thereafter, we discuss the effects of CSCs on tumor immune microenvironment in SCLC and corresponding immunotherapeutic approaches. Eventually, we propose that the combination of immunotherapy targeting CSCs with standard drugs is a promising direction for SCLC therapies.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Pathology, Xianyang Central Hospital, Xianyang 712000, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Sun X, Liu L, Wan T, Huang Q, Chen J, Luo R, Liu J. The prognostic impact of the immune microenvironment in small-cell neuroendocrine carcinoma of the uterine cervix: PD-L1 and immune cell subtypes. Cancer Cell Int 2022; 22:348. [PMCID: PMC9664608 DOI: 10.1186/s12935-022-02716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
We investigate the correlation between programmed cell death-ligand 1 (PD-L1) and tumor-associated immune cell (TAIC) density in small-cell neuroendocrine carcinoma of the uterine cervix (SCNEC) and their correlation with clinicopathologic features.
Methods
PD-L1 and mismatch repair protein (MMR) expression in cancer cells and the density of TAIC were evaluated by immunohistochemistry in 89 SCNEC patients. The combined positive score (CPS), tumor proportion score (TPS), and immune cell score (ICS) of PD-L1 were measured, along with their correlation with clinicopathologic features in SCNEC patients using statistical analyses.
Results
CPS of PD-L1 ≥ 1 was seen in 68.5% of patients, positive TPS and ICS of PD-L1 were detected in 59.6% and 33.7% of patients, respectively. PD-L1CPS was higher in tumor-infiltrating immune cells (r = 0.387, p = 0.001) and positively correlated with programmed cell death-1 and forkhead box P3 + regulatory T cell (FOXP3 + Treg) infiltration (r = 0.443, p < 0.001; r = 0.532, p < 0.001). There was no statistical correlation between PD-L1 and MMR status. PD-L1CPS and PD-L1ICS positivity were independent prognostic factors, correlating with a favorable survival (HR (95%CI) = 0.363(0.139–0.950), p = 0.039 and HR (95% CI) = 0.199(0.050–0.802), p = 0.023, respectively). PD-L1ICS positivity was an independent indicator of recurrence in SCNEC patients and associated with better disease-free survival (HR (95% CI) = 0.124(0.036–0425), p = 0.001). TAIC and MMR levels had no statistical impact on survival results.
Conclusions
PD-L1 positivity was seen in over half of SCNEC tumors. It may work synergistically with FOXP3 + Treg and other infiltrating immune cells to support an adaptive immune response. PD-L1 positivity may be a favorable prognostic factor in SCNEC.
Collapse
|
10
|
Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Semin Cancer Biol 2022; 86:273-285. [PMID: 35288298 DOI: 10.1016/j.semcancer.2022.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer characterized by dismal prognosis. Although SCLC may initially respond well to platinum-based chemotherapy, it ultimately relapses and is almost universally resistant to this treatment. Immune checkpoint inhibitors (ICIs) have been approved as the first- and third-line therapeutic regimens for extensive-stage or relapsed SCLC, respectively. Despite this, only a minority of patients with SCLC respond to ICIs partly due to a lack of tumor-infiltrating lymphocytes (TILs). Transforming the immune "cold" tumors into "hot" tumors that are more likely to respond to ICIs is the main challenge for SCLC therapy. Ferroptosis, necroptosis, and pyroptosis represent the newly discovered immunogenic cell death (ICD) forms. Promoting ICD may alter the tumor microenvironment (TME) and the influx of TILs, and combination of their inducers and ICIs plays a synergistical role in enhancing antitumor effects. Nevertheless, the combination of the above two modalities has not been systematically discussed in SCLC therapy. In the present review, we summarize the roles of distinct ICD mechanisms on antitumor immunity and recent advances of ferroptosis-, necroptosis- and pyroptosis-inducing agents, and present perspectives on these cell death mechanisms in immunotherapy of SCLC.
Collapse
|
11
|
Dora D, Dora T, Szegvari G, Gerdán C, Lohinai Z. EZCancerTarget: an open-access drug repurposing and data-collection tool to enhance target validation and optimize international research efforts against highly progressive cancers. BioData Min 2022; 15:25. [PMID: 36183137 PMCID: PMC9526900 DOI: 10.1186/s13040-022-00307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/18/2022] [Indexed: 11/22/2022] Open
Abstract
The expanding body of potential therapeutic targets requires easily accessible, structured, and transparent real-time interpretation of molecular data. Open-access genomic, proteomic and drug-repurposing databases transformed the landscape of cancer research, but most of them are difficult and time-consuming for casual users. Furthermore, to conduct systematic searches and data retrieval on multiple targets, researchers need the help of an expert bioinformatician, who is not always readily available for smaller research teams. We invite research teams to join and aim to enhance the cooperative work of more experienced groups to harmonize international efforts to overcome devastating malignancies. Here, we integrate available fundamental data and present a novel, open access, data-aggregating, drug repurposing platform, deriving our searches from the entries of Clue.io. We show how we integrated our previous expertise in small-cell lung cancer (SCLC) to initiate a new platform to overcome highly progressive cancers such as triple-negative breast and pancreatic cancer with data-aggregating approaches. Through the front end, the current content of the platform can be further expanded or replaced and users can create their drug-target list to select the clinically most relevant targets for further functional validation assays or drug trials. EZCancerTarget integrates searches from publicly available databases, such as PubChem, DrugBank, PubMed, and EMA, citing up-to-date and relevant literature of every target. Moreover, information on compounds is complemented with biological background information on eligible targets using entities like UniProt, String, and GeneCards, presenting relevant pathways, molecular- and biological function and subcellular localizations of these molecules. Cancer drug discovery requires a convergence of complex, often disparate fields. We present a simple, transparent, and user-friendly drug repurposing software to facilitate the efforts of research groups in the field of cancer research.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto st. 58, Budapest, 1094, Hungary.
| | - Timea Dora
- Department of Management and Business Economics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gabor Szegvari
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Csongor Gerdán
- National Korányi Institute of Pulmonology, Piheno ut 1., 1121, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary. .,National Korányi Institute of Pulmonology, Piheno ut 1., 1121, Budapest, Hungary.
| |
Collapse
|
12
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE, Szlosarek PW. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:53-66. [PMID: 36091646 PMCID: PMC9462517 DOI: 10.2147/lctt.s335117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Arginine deprivation has gained increasing traction as a novel and safe antimetabolite strategy for the treatment of several hard-to-treat cancers characterised by a critical dependency on arginine. Small cell lung cancer (SCLC) displays marked arginine auxotrophy due to inactivation of the rate-limiting enzyme argininosuccinate synthetase 1 (ASS1), and as a consequence may be targeted with pegylated arginine deiminase or ADI-PEG20 (pegargiminase) and human recombinant pegylated arginases (rhArgPEG, BCT-100 and pegzilarginase). Although preclinical studies reveal that ASS1-deficient SCLC cell lines are highly sensitive to arginine-degrading enzymes, there is a clear disconnect with the clinic with minimal activity seen to date that may be due in part to patient selection. Recent studies have explored resistance mechanisms to arginine depletion focusing on tumor adaptation, such as ASS1 re-expression and autophagy, stromal cell inputs including macrophage infiltration, and tumor heterogeneity. Here, we explore how arginine deprivation may be combined strategically with novel agents to improve SCLC management by modulating resistance and increasing the efficacy of existing agents. Moreover, recent work has identified an intriguing role for targeting arginine in combination with PD-1/PD-L1 immune checkpoint inhibitors and clinical trials are in progress. Thus, future studies of arginine-depleting agents with chemoimmunotherapy, the current standard of care for SCLC, may lead to enhanced disease control and much needed improvements in long-term survival for patients.
Collapse
Affiliation(s)
- Joséphine Carpentier
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iuliia Pavlyk
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Uma Mukherjee
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter E Hall
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter W Szlosarek
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| |
Collapse
|
13
|
Ahirwar DK, Peng B, Charan M, Misri S, Mishra S, Kaul K, Sassi S, Gadepalli VS, Siddiqui J, Miles WO, Ganju RK. Slit2/Robo1 signaling inhibits small-cell lung cancer by targeting β-catenin signaling in tumor cells and macrophages. Mol Oncol 2022; 17:839-856. [PMID: 35838343 PMCID: PMC10158774 DOI: 10.1002/1878-0261.13289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with poor patient prognosis. However, the mechanisms that regulate SCLC progression and metastasis remain undefined. Here, we show that the expression of the slit guidance ligand 2 (SLIT2) tumor suppressor gene is reduced in SCLC tumors relative to adjacent normal tissue. In addition, the expression of the SLIT2 receptor, roundabout guidance receptor 1 (ROBO1), is upregulated. We find a positive association between SLIT2 expression and the Yes1 associated transcriptional regulator (YAP1)-expressing SCLC subtype (SCLC-Y), which shows a better prognosis. Using genetically engineered SCLC cells, adenovirus gene therapy, and preclinical xenograft models, we show that SLIT2 overexpression or the deletion of ROBO1 restricts tumor growth in vitro and in vivo. Mechanistic studies revealed significant inhibition of myeloid-derived suppressor cells (MDSCs) and M2-like tumor-associated macrophages (TAMs) in the SCLC tumors. In addition, SLIT2 enhances M1-like and phagocytic macrophages. Molecular analysis showed that ROBO1 knockout or SLIT2 overexpression suppresses the transforming growth factor beta 1 (TGF-β1)/β-catenin signaling pathway in both tumor cells and macrophages. Overall, we find that SLIT2 and ROBO1 have contrasting effects on SCLC tumors. SLIT2 suppresses, whereas ROBO1 promotes, SCLC growth by regulating the Tgf-β1/glycogen synthase kinase-3 beta (GSK3)/β-catenin signaling pathway in tumor cells and TAMs. These studies indicate that SLIT2 could be used as a novel therapeutic agent against aggressive SCLC.
Collapse
Affiliation(s)
- Dinesh K Ahirwar
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Bo Peng
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Manish Charan
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Swati Misri
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sanjay Mishra
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kirti Kaul
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Salha Sassi
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Jalal Siddiqui
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Wayne O Miles
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Cui Y, Luo Y, Qian Q, Tian J, Fang Z, Wang X, Zeng Y, Wu J, Li Y. Sanguinarine Regulates Tumor-Associated Macrophages to Prevent Lung Cancer Angiogenesis Through the WNT/β-Catenin Pathway. Front Oncol 2022; 12:732860. [PMID: 35847885 PMCID: PMC9282876 DOI: 10.3389/fonc.2022.732860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor-associated macrophage (TAM)-mediated angiogenesis in the tumor microenvironment is a prerequisite for lung cancer growth and metastasis. Therefore, targeting TAMs, which block angiogenesis, is expected to be a breakthrough in controlling the growth and metastasis of lung cancer. In this study, we found that Sanguinarine (Sang) inhibits tumor growth and tumor angiogenesis of subcutaneously transplanted tumors in Lewis lung cancer mice. Furthermore, Sanguinarine inhibited the proliferation, migration, and lumen formation of HUVECs and the expression of CD31 and VEGF by regulating the polarization of M2 macrophages in vitro. However, the inhibitory effect of Sanguinarine on angiogenesis remained in vivo despite the clearance of macrophages using small molecule drugs. Further high-throughput sequencing suggested that WNT/β-Catenin signaling might represent the underlying mechanism of the beneficial effects of Sanguinarine. Finally, the β-Catenin activator SKL2001 antagonized the effect of Sanguinarine, indicating that Sanguinarine can regulate M2-mediated angiogenesis through the WNT/β-Catenin pathway. In conclusion, this study presents the first findings that Sanguinarine can function as a novel regulator of the WNT/β-Catenin pathway to modulate the M2 macrophage polarization and inhibit angiogenesis, which has potential application value in immunotherapy and antiangiogenic therapy for lung cancer.
Collapse
Affiliation(s)
- Yajing Cui
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Qian
- Department of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianhui Tian
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Wang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaoying Zeng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jianchun Wu, ; Yan Li,
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jianchun Wu, ; Yan Li,
| |
Collapse
|
15
|
Yan H, Shi J, Dai Y, Li X, Wu Y, Zhang J, Gu Z, Zhang C, Leng J. Technique integration of single-cell RNA sequencing with spatially resolved transcriptomics in the tumor microenvironment. Cancer Cell Int 2022; 22:155. [PMID: 35440049 PMCID: PMC9020011 DOI: 10.1186/s12935-022-02580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Background The tumor microenvironment contributes to tumor initiation, growth, invasion, and metastasis. The tumor microenvironment is heterogeneous in cellular and acellular components, particularly structural features and their gene expression at the inter-and intra-tumor levels. Main text Single-cell RNA sequencing profiles single-cell transcriptomes to reveal cell proportions and trajectories while spatial information is lacking. Spatially resolved transcriptomics redeems this lack with limited coverage or depth of transcripts. Hence, the integration of single-cell RNA sequencing and spatial data makes the best use of their strengths, having insights into exploring diverse tissue architectures and interactions in a complicated network. We review applications of integrating the two methods, especially in cellular components in the tumor microenvironment, showing each role in cancer initiation and progression, which provides clinical relevance in prognosis, optimal treatment, and potential therapeutic targets. Conclusion The integration of two approaches may break the bottlenecks in the spatial resolution of neighboring cell subpopulations in cancer, and help to describe the signaling circuitry about the intercommunication and its exact mechanisms in producing different types and malignant stages of tumors.
Collapse
Affiliation(s)
- Hailan Yan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Yi Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Xiaoyan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Yushi Wu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Zhiyue Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Chenyu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Jinhua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China. .,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
16
|
Sun Y, Li Z, Wang W, Zhang X, Li W, Du G, Yin J, Xiao W, Yang H. Identification and verification of YBX3 and its regulatory gene HEIH as an oncogenic system: A multidimensional analysis in colon cancer. Front Immunol 2022; 13:957865. [PMID: 36059530 PMCID: PMC9433931 DOI: 10.3389/fimmu.2022.957865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
The novel gene YBX3 is important for regulating translation and RNA catabolism and encodes a protein with a highly conserved cold-shock domain. However, its pathogenic roles across cancers (e.g., colon cancer) and its regulation remain unclear. We identified the pathogenic roles of YBX3 and its regulatory lncRNA HEIH in various cancers and investigated their effects on tumor progression in colon cancer. Methods including RNA pull-down, MS, and TMA of 93 patients, qPCR of 12 patients with diverse clinicopathologic stages, and western blotting were performed. The pancancer analysis showed that YBX3 expression varies significantly among not only cancer types but also molecular and immune subtypes of the same cancer. Furthermore, its expression in colon cancer is clinically significant, and there is an obvious negative regulatory association between HEIH and YBX3. Among various cancers, especially colon cancer, YBX3 is more related than HEIH expression to the clinical features and prognosis of subgroups. The receiver operating characteristic analysis showed that HEIH and YBX3 have similar predictive capacity in various cancers. The analysis of differentially expressed genes in colon cancer revealed that they have similar hub gene networks, indicating an oncogenic system with a strong overlap. The results also suggest that YBX3 is associated with tumor immune evasion via different mechanisms involving T-cell exclusion in different cancer types and by the tumor infiltration of immune cells. Interestingly, scRNA-seq revealed that HEIH inhibits this phenomenon. Our results also suggest that YBX3 expression is associated with immune or chemotherapeutic outcomes in various cancers, and YBX3 exhibited a higher predictive power than two of seven standardized biomarkers for response outcomes and overall survival of immune checkpoint blockade subcohorts. In colon cancer cell lines, lncRNA-HEIH and YBX3 associate. MS confirmed that YBX3 was pulled down with HEIH, and western blot showed that HEIH knockdown disinhibited YBX3. This study strongly suggests that lncRNA-HEIH/YBX3 is a pancancer immune-oncogenic system and could serve as a biomarker for diagnosis and prognosis and as a therapeutic target, especially in colon cancer.
Collapse
Affiliation(s)
- Yiming Sun
- Department of General Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wensheng Wang
- Department of General Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | | | - Wenjing Li
- Department of Stem Cell and Regenerative Medicine, The Southwest Hospital of Army Medical University, Chongqing, China
| | - Guangsheng Du
- Department of General Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiuheng Yin
- Department of General Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- *Correspondence: Hua Yang, ; Weidong Xiao,
| | - Hua Yang
- Department of General Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Department of General Surgery, Chongqing General Hospital, Chongqing, China
- *Correspondence: Hua Yang, ; Weidong Xiao,
| |
Collapse
|
17
|
In Vitro 3D Staphylococcus aureus Abscess Communities Induce Bone Marrow Cells to Expand into Myeloid-Derived Suppressor Cells. Pathogens 2021; 10:pathogens10111446. [PMID: 34832602 PMCID: PMC8622274 DOI: 10.3390/pathogens10111446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023] Open
Abstract
Staphylococcus aureus is the main causative pathogen of subcutaneous, bone, and implant-related infections, forming structures known as staphylococcal abscess communities (SACs) within tissues that also contain immunosuppressive myeloid-derived suppressor cells (MDSCs). Although both SACs and MDSCs are present in chronic S. aureus infections, it remains unknown whether SACs directly trigger MDSC expansion. To investigate this, a previously developed 3D in vitro SAC model was co-cultured with murine and human bone marrow cells. Subsequently, it was shown that SAC-exposed human CD11blow/− myeloid cells or SAC-exposed murine CD11b+ Gr-1+ cells were immunosuppressive mainly by reducing absolute CD4+ and CD8α+ T cell numbers, as shown in T cell proliferation assays and with flow cytometry. Monocytic MDSCs from mice with an S. aureus bone infection also strongly reduced CD4+ and CD8α+ T cell numbers. Using protein biomarker analysis and an immunoassay, we detected in SAC–bone marrow co-cultures high levels of GM-CSF, IL-6, VEGF, IL-1β, TNFα, IL-10, and TGF-β. Furthermore, SAC-exposed neutrophils expressed Arg-1 and SAC-exposed monocytes expressed Arg-1 and iNOS, as shown via immunofluorescent stains. Overall, this study showed that SACs cause MDSC expansion from bone marrow cells and identified possible mediators to target as an additional strategy for treating chronic S. aureus infections.
Collapse
|
18
|
Monocyte Infiltration and Differentiation in 3D Multicellular Spheroid Cancer Models. Pathogens 2021; 10:pathogens10080969. [PMID: 34451433 PMCID: PMC8399809 DOI: 10.3390/pathogens10080969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Tumor-associated macrophages often correlate with tumor progression, and therapies targeting immune cells in tumors have emerged as promising treatments. To select effective therapies, we established an in vitro 3D multicellular spheroid model including cancer cells, fibroblasts, and monocytes. We analyzed monocyte infiltration and differentiation in spheroids generated from fibroblasts and either of the cancer cell lines MCF-7, HT-29, PANC-1, or MIA PaCa-2. Monocytes rapidly infiltrated spheroids and differentiated into mature macrophages with diverse phenotypes in a cancer cell line-dependent manner. MIA PaCa-2 spheroids polarized infiltrating monocytes to M2-like macrophages with high CD206 and CD14 expression, whereas monocytes polarized by MCF-7 spheroids displayed an M1-like phenotype. Monocytes in HT-29 and PANC-1 primarily obtained an M2-like phenotype but also showed upregulation of M1 markers. Analysis of the secretion of 43 soluble factors demonstrated that the cytokine profile between spheroid cultures differed considerably depending on the cancer cell line. Secretion of most of the cytokines increased upon the addition of monocytes resulting in a more inflammatory and pro-tumorigenic environment. These multicellular spheroids can be used to recapitulate the tumor microenvironment and the phenotype of tumor-associated macrophages in vitro and provide more realistic 3D cancer models allowing the in vitro screening of immunotherapeutic compounds.
Collapse
|