1
|
Albqmi M, Selim S, Yaghoubi Khanghahi M, Crecchio C, Al-Sanea MM, Alnusaire TS, Almuhayawi MS, Al Jaouni SK, Hussein S, Warrad M, AbdElgawad H. Chromium(VI) Toxicity and Active Tolerance Mechanisms of Wheat Plant Treated with Plant Growth-Promoting Actinobacteria and Olive Solid Waste. ACS OMEGA 2023; 8:32458-32467. [PMID: 37720762 PMCID: PMC10500566 DOI: 10.1021/acsomega.3c02447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
The present study aimed to assess the potential of plant growth-promoting Actinobacteria and olive solid waste (OSW) in ameliorating some biochemical and molecular parameters of wheat (Triticum aestivum) plants under the toxicity of high chromium levels in the soil. With this aim, a pot experiment was conducted, where the wheat plants were treated with a consortium of four Actinobacterium sp. (Bf treatment) and/or OSW (4% w/w) under two levels of nonstress and chromium stress [400 mg Cr(VI) per kg of soil] to estimate the photosynthetic traits, antioxidant protection machine, and detoxification activity. Both Bf and OSW treatments improved the levels of chlorophyll a (+47-98%), carotenoid (+324-566%), stomatal conductance (+17-18%), chlorophyll fluorescence (+12-28%), and photorespiratory metabolism (including +44-72% in glycolate oxidase activity, +6-72% in hydroxypyruvate reductase activity, and +5-44% in a glycine to serine ratio) in leaves of stressed plants as compared to those in the stressed control, which resulted in higher photosynthesis capacity (+18-40%) in chromium-stressed plants. These results were associated with an enhancement in the content of antioxidant metabolites (+10-117%), of direct reactive oxygen species-detoxifying enzymes (+49-94%), and of enzymatic (+40-261%) and nonenzymatic (+17-175%) components of the ascorbate-glutathione cycle in Bf- and OSW-treated plants under stress. Moreover, increments in the content of phytochelatins (+38-74%) and metallothioneins (+29-41%), as markers of detoxification activity, were recorded in the plants treated with Bf and OSW under chromium toxicity. In conclusion, this study revealed that the application of beneficial Actinobacteria and OSW as biofertilization/supplementation could represent a worthwhile consequence in improving dry matter production and enhancing plant tolerance and adaptability to chromium toxicity.
Collapse
Affiliation(s)
- Mha Albqmi
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
- Olive
Research Center, Jouf University, Sakaka 72388, Saudi Arabia
| | - Samy Selim
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mohammad Yaghoubi Khanghahi
- Department
of Soil, Plant and Food Sciences, University
of Bari Aldo Moro, Via Amendola 165/A, Bari 70126, Italy
| | - Carmine Crecchio
- Department
of Soil, Plant and Food Sciences, University
of Bari Aldo Moro, Via Amendola 165/A, Bari 70126, Italy
| | - Mohammad M. Al-Sanea
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Taghreed S. Alnusaire
- Department
of Biology, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department
of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soad K. Al Jaouni
- Department
of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of
Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa Hussein
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka 72388, Saudi Arabia
| | - Mona Warrad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences
at Al-Quriat, Jouf University, Al-Quriat 77425, Saudi Arabia
| | - Hamada AbdElgawad
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
2
|
Alsherif EA, Yaghoubi Khanghahi M, Crecchio C, Korany SM, Sobrinho RL, AbdElgawad H. Understanding the Active Mechanisms of Plant ( Sesuvium portulacastrum L.) against Heavy Metal Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:676. [PMID: 36771762 PMCID: PMC9919468 DOI: 10.3390/plants12030676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Through metabolic analysis, the present research seeks to reveal the defense mechanisms activated by a heavy metals-resistant plant, Sesuvium portulacastrum L. In this regard, shifting metabolisms in this plant were investigated in different heavy metals-contaminated experimental sites, which were 50, 100, 500, 1000, and 5000 m away from a man-fabricated sewage dumping lake, with a wide range of pollutant concentrations. Heavy metals contaminations in contaminated soil and their impact on mineral composition and microbial population were also investigated. The significant findings to emerge from this research were the modifications of nitrogen and carbon metabolisms in plant tissues to cope with heavy metal toxicity. Increased plant amylase enzymes activity in contaminated soils increased starch degradation to soluble sugars as a mechanism to mitigate stress impact. Furthermore, increased activity of sucrose phosphate synthase in contaminated plants led to more accumulation of sucrose. Moreover, no change in the content of sucrose hydrolyzing enzymes (vacuolar invertase and cytosolic invertase) in the contaminated sites can suggest the translocation of sucrose from shoot to root under stress. Similarly, although this study demonstrated a high level of malate in plants exposed to stress, caution must be applied in suggesting a strong link between organic acids and the activation of defense mechanisms in plants, since other key organic acids were not affected by stress. Therefore, activation of other defense mechanisms, especially antioxidant defense molecules including alpha and beta tocopherols, showed a greater role in protecting plants from heavy metals stress. Moreover, the increment in the content of some amino acids (e.g., glycine, alanine, glutamate, arginine, and ornithine) in plants under metal toxicity can be attributed to a high level of stress tolerance. Moreover, strategies in the excitation of the synthesis of the unsaturated fatty acids (oleic and palmitoleic) were involved in enhancing stress tolerance, which was unexpectedly associated with an increase in the accumulation of palmitic and stearic (saturated fatty acids). Taken together, it can be concluded that these multiple mechanisms were involved in the response to stress which may be cooperative and complementary with each other in inducing resistance to the plants.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohammad Yaghoubi Khanghahi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Renato Lustosa Sobrinho
- Department of Agronomy, Federal University of Technology—Paraná (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
3
|
Ma F, Wang C, Zhang Y, Chen J, Xie R, Sun Z. Development of Microbial Indicators in Ecological Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13888. [PMID: 36360768 PMCID: PMC9654993 DOI: 10.3390/ijerph192113888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Indicators can monitor ecological environment changes and help maintain ecological balance. Bioindicators are divided into animal, plant, and microbial indicators, of which animal and plant indicators have previously been the most researched, but microbial indicators have drawn attention recently owing to their high sensitivity to the environment and their potential for use in monitoring environmental changes. To date, reviews of studies of animals and plants as indicator species have frequently been conducted, but reviews of research on microorganisms as indicator species have been rare. In this review, we summarize and analyze studies using microorganisms as indicator species in a variety of ecosystems, such as forests, deserts, aquatic and plateau ecosystems, and artificial ecosystems, which are contained in wetlands, farmlands, and mining ecosystems. This review provides useful information for the further use of microorganisms as indicators to reflect the changes in different environmental ecosystems.
Collapse
Affiliation(s)
- Fangzhou Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Chenbin Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yanjing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Rui Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhanbin Sun
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Su A, Xu Y, Xu M, Ding S, Li M, Zhang Y. Resilience of the wheat root-associated microbiome to the disturbance of phenanthrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156487. [PMID: 35667431 DOI: 10.1016/j.scitotenv.2022.156487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The microbial communities are of high importance to the restoration of ecological function and plant health, while little information about the influence of exogenous pollutants on the resilience and temporal dynamics of root microbial communities is available. In this study, a greenhouse experiment was conducted to investigate the effects of exogenous phenanthrene in terms of time and pollution disturbance on the wheat root-associated microbial communities. It was found that a high phenanthrene degradation rate of 86 % was achieved in the rhizosphere of wheat after the first-week planting. Compared to phenanthrene pollution, temporal changes had more significant impacts on the wheat root microbial communities. Obvious change of microbes influenced by PHE had been revealed at the initial three-week planting even most of PHE has been degraded, and the enriched microbes in the rhizosphere were affiliated to Altererythrobacter, Massilia, Mycobacterium, Ramlibacter, Sphingobium, Novosphingobium and Romboutsia. However, at the later stage after four-week incubation, the wheat root-associated microbial communities gradually recovered to the state without pollution. The results of this study were helpful to deepen the understanding of the response of root-associated microbial resilience to the exogenous phenanthrene pollution, and would benefit the stability and balance of agricultural ecology facing exogenous organic pollutants.
Collapse
Affiliation(s)
- Aoxue Su
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058 Hangzhou, China.
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD., Jinan 250100, China
| | - Shuang Ding
- China National Institute of Standardization, Beijing, China
| | - Mingyue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Ying Zhang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Camacho A, Mora C, Picazo A, Rochera C, Camacho-Santamans A, Morant D, Roca-Pérez L, Ramos-Miras JJ, Rodríguez-Martín JA, Boluda R. Effects of Soil Quality on the Microbial Community Structure of Poorly Evolved Mediterranean Soils. TOXICS 2022; 10:toxics10010014. [PMID: 35051056 PMCID: PMC8781153 DOI: 10.3390/toxics10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/21/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Physical and chemical alterations may affect the microbiota of soils as much as the specific presence of toxic pollutants. The relationship between the microbial diversity patterns and the soil quality in a Mediterranean context is studied here to test the hypothesis that soil microbiota is strongly affected by the level of anthropogenic soil alteration. Our aim has been to determine the potential effect of organic matter loss and associated changes in soil microbiota of poorly evolved Mediterranean soils (Leptosols and Regosols) suffering anthropogenic stress (i.e., cropping and deforestation). The studied soils correspond to nine different sites which differed in some features, such as the parent material, vegetation cover, or soil use and types. A methodological approach has been used that combines the classical physical and chemical study of soils with molecular characterization of the microbial assemblages using specific primers for Bacteria, Archaea and ectomycorrhizal Fungi. In agreement with previous studies within the region, physical, chemical and biological characteristics of soils varied notably depending on these factors. Microbial biomass, soil organic matter, and moisture, decreased in soils as deforestation increased, even in those partially degraded to substitution shrubland. Major differences were observed in the microbial community structure between the mollic and rendzic Leptosols found in forest soils, and the skeletic and dolomitic Leptosols in substitute shrublands, as well as with the skeletic and dolomitic Leptosols and calcaric Regosols in dry croplands. Forest soils displayed a higher microbial richness (OTU’s number) and biomass, as well as more stable and connected ecological networks. Here, we point out how human activities such as agriculture and other effects of deforestation led to changes in soil properties, thus affecting its quality driving changes in their microbial diversity and biomass patterns. Our findings demonstrate the potential risk that the replacement of forest areas may have in the conservation of the soil’s microbiota pool, both active and passive, which are basic for the maintenance of biogeochemical processes.
Collapse
Affiliation(s)
- Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary, Universitat de València, E-46980 Paterna, València, Spain; (C.M.); (A.P.); (C.R.); (A.C.-S.); (D.M.)
- Correspondence: ; Tel.: +34-96-3543935
| | - César Mora
- Cavanilles Institute for Biodiversity and Evolutionary, Universitat de València, E-46980 Paterna, València, Spain; (C.M.); (A.P.); (C.R.); (A.C.-S.); (D.M.)
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, E-46100 Burjassot, València, Spain; (L.R.-P.); (R.B.)
| | - Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary, Universitat de València, E-46980 Paterna, València, Spain; (C.M.); (A.P.); (C.R.); (A.C.-S.); (D.M.)
| | - Carlos Rochera
- Cavanilles Institute for Biodiversity and Evolutionary, Universitat de València, E-46980 Paterna, València, Spain; (C.M.); (A.P.); (C.R.); (A.C.-S.); (D.M.)
| | - Alba Camacho-Santamans
- Cavanilles Institute for Biodiversity and Evolutionary, Universitat de València, E-46980 Paterna, València, Spain; (C.M.); (A.P.); (C.R.); (A.C.-S.); (D.M.)
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, E-46100 Burjassot, València, Spain; (L.R.-P.); (R.B.)
| | - Daniel Morant
- Cavanilles Institute for Biodiversity and Evolutionary, Universitat de València, E-46980 Paterna, València, Spain; (C.M.); (A.P.); (C.R.); (A.C.-S.); (D.M.)
| | - Luis Roca-Pérez
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, E-46100 Burjassot, València, Spain; (L.R.-P.); (R.B.)
| | - José Joaquín Ramos-Miras
- Departamento de Didáctica de las Ciencias Sociales y Experimentales, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - José A. Rodríguez-Martín
- Department of Environment, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), E-28040 Madrid, Spain;
| | - Rafael Boluda
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, E-46100 Burjassot, València, Spain; (L.R.-P.); (R.B.)
| |
Collapse
|