1
|
Li J, Koonyosying P, Korsieporn W, Paradee N, Hutachok N, Xu H, Ma Y, Chuljerm H, Srichairatanakool S. Deferiprone-resveratrol hybrid attenuates iron accumulation, oxidative stress, and antioxidant defenses in iron-loaded human Huh7 hepatic cells. Front Mol Biosci 2024; 11:1364261. [PMID: 38572444 PMCID: PMC10987756 DOI: 10.3389/fmolb.2024.1364261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Chronic liver diseases are complications of thalassemia with iron overload. Iron chelators are required to remove excessive iron, and antioxidants are supplemented to diminish harmful reactive oxygen species (ROS), purposing to ameliorate oxidative liver damage and dysfunctions. The deferiprone-resveratrol hybrid (DFP-RVT) is a synthetic iron chelator possessing anti-β-amyloid peptide aggregation, anti-malarial activity, and hepatoprotection in plasmodium-infected mice. The study focuses on investigating the antioxidant, cytotoxicity, iron-chelating, anti-lipid peroxidation, and antioxidant defense properties of DFP-RVT in iron-loaded human hepatocellular carcinoma (Huh7) cells. In the findings, DFP-RVT dose dependently bound Fe(II) and Fe(III) and exerted stronger ABTS•- and DPPH•-scavenging (IC50 = 8.0 and 164 μM, respectively) and anti-RBC hemolytic activities (IC50 = 640 μM) than DFP but weaker than RVT (p < 0.01). DFP-RVT was neither toxic to Huh7 cells nor PBMCs. In addition, DFP-RVT diminished the level of redox-active iron (p < 0.01) and decreased the non-heme iron content (p < 0.01) in iron-loaded Huh7 cells effectively when compared without treatment in the order of DFP-RVT > RVT ∼ DFP treatments (50 µM each). Moreover, the compound decreased levels of hepatic ROS in a dose-dependent manner and the level of malondialdehyde, which was stronger than DFP but weaker than RVT. Furthermore, DFP-RVT restored the decrease in the GSH content and GPX and SOD activities (p < 0.01) in iron-loaded Huh7 cells in the dose-dependent manner, consistently in the order of RVT > DFP-RVT > DFP. Thus, the DFP-RVT hybrid possesses potent iron chelation, antioxidation, anti-lipid peroxidation, and antioxidant defense against oxidative liver damage under iron overload.
Collapse
Affiliation(s)
- Jin Li
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Biochemistry, Faculty of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Woranontee Korsieporn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Narisara Paradee
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuntouchaporn Hutachok
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Honghong Xu
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Biochemistry, Faculty of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Yongmin Ma
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China
| | - Hataichanok Chuljerm
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
2
|
Ahmed MA, Ameyaw EO, Armah FA, Fynn PM, Asiamah I, Ghartey-Kwansah G, Zoiku FK, Ofori-Attah E, Adokoh CK. Alkaloidal Extracts from Avicennia africana P. Beauv. (Avicenniaceae) Leaf: An Antiplasmodial, Antioxidant, and Erythrocyte Viable. Adv Pharmacol Pharm Sci 2024; 2024:4541581. [PMID: 38235482 PMCID: PMC10791479 DOI: 10.1155/2024/4541581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Background The emergence of drug-resistant parasites impedes disease management and eradication efforts. Hence, a reinvigorated attempt to search for potent lead compounds in the mangroves is imperative. Aim This study evaluates in vitro antiplasmodial activity, antioxidant properties, and cytotoxicity of A. africana leaf alkaloidal extracts. Methods The A. africana leaves were macerated with 70% ethanol to obtain a total crude extract. Dichloromethane and chloroform-isopropanol (3 : 1, v/v) were used to extract the crude alkaloids and quaternary alkaloids from the total crude. The antiplasmodial activities of the alkaloidal extracts were performed against 3D7 P. falciparum chloroquine-sensitive clone via the SYBR Green I fluorescence assay with artesunate serving as the reference drug. The alkaloidal extracts were further evaluated for antioxidant properties via the total antioxidant capacity (TAC), the total glutathione concentration (GSH), the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay, and the ferric-reducing antioxidant power (FRAP) methods. The cytotoxic activity of the alkaloidal extracts was tested on erythrocytes using a 3-(4,5-dimethylthiazol-2-yl)-5-diphenyltetrazolium bromide-MTT assay with little modification. The phytocompounds in the alkaloidal extracts were identified via gas chromatography-mass spectrometry (GC-MS) techniques. Results The total crude extract showed good antiplasmodial activity (IC50 = 11.890 µg/mL). The crude and quaternary alkaloidal extracts demonstrated promising antiplasmodial effects with IC50 values of 6.217 and 6.285 µg/mL, respectively. The total crude and alkaloidal extracts showed good antioxidant properties with negligible cytotoxicity on erythrocytes with good selectivity indices. The GC-MS spectral analysis of crude alkaloidal extracts gave indole and isoquinoline alkaloids and several other compounds. Dexrazoxane was found to be the main compound predicted, with an 86% peak area in the quaternary alkaloidal extract. Conclusion The crude and quaternary alkaloidal extracts exhibited antiplasmodial activities and ability to inhibit oxidative stress with negligible toxicity on erythrocytes. This may be good characteristics to avoid oxidative stress related to Plasmodium infection in the treatment of malaria.
Collapse
Affiliation(s)
- Mustapha A. Ahmed
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Small Animal Teaching Hospital, SVM, CBAS, University of Ghana, Legon, Accra, Ghana
| | - Elvis O. Ameyaw
- Department of Pharmacotherapeutics and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Francis A. Armah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Patrick M. Fynn
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Asiamah
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Felix K. Zoiku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ebenezer Ofori-Attah
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Christian K. Adokoh
- Department of Forensic Sciences, School of Biological Science, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Vajdi M, Sefidmooye Azar P, Mahmoodpoor A, Dashti F, Sanaie S, Kiani Chalmardi F, Karimi A. A comprehensive insight into the molecular and cellular mechanisms of action of resveratrol on complications of sepsis a systematic review. Phytother Res 2023; 37:3780-3808. [PMID: 37405908 DOI: 10.1002/ptr.7917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Sepsis and septic shock are still one of the most important medical challenges. Sepsis is an extreme and uncontrolled response of the innate immune system to invading pathogenesis. Resveratrol (3,5,4'-trihydroxytrans-stilbene), is a phenolic and non-flavonoid compound naturally produced by some plants and fruits. The object of the current study is to systematically review the impacts of resveratrol and its mechanisms of function in the management of sepsis and its related complications. The guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements were applied to perform the study (PROSPERO: CRD42021289357). We searched Embase, Web of Science, Google Scholar, Science Direct, PubMed, ProQuest, and Scopus databases up to January 2023 by using the relevant keywords. Study criteria were met by 72 out of 1415 articles screened. The results of this systematic review depict that resveratrol can reduces the complications of sepsis by affecting inflammatory pathways, oxidative stress, and modulating immune responses. Future human randomized clinical trials are necessary due to the promising therapeutic effects of resveratrol on sepsis complications and the lack of clinical trials in this regard.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, Oxford, Mississippi, USA
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Dashti
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Kampoun T, Koonyosying P, Ruangsuriya J, Prommana P, Shaw PJ, Kamchonwongpaisan S, Suwito H, Puspaningsih NNT, Uthaipibull C, Srichairatanakool S. Antagonistic antimalarial properties of a methoxyamino chalcone derivative and 3-hydroxypyridinones in combination with dihydroartemisinin against Plasmodium falciparum. PeerJ 2023; 11:e15187. [PMID: 37131988 PMCID: PMC10149052 DOI: 10.7717/peerj.15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023] Open
Abstract
Background The spread of artemisinin (ART)-resistant Plasmodium falciparum threatens the control of malaria. Mutations in the propeller domains of P. falciparum Kelch13 (k13) are strongly associated with ART resistance. Ferredoxin (Fd), a component of the ferredoxin/NADP+ reductase (Fd/FNR) redox system, is essential for isoprenoid precursor synthesis in the plasmodial apicoplast, which is important for K13-dependent hemoglobin trafficking and ART activation. Therefore, Fd is an antimalarial drug target and fd mutations may modulate ART sensitivity. We hypothesized that loss of Fd/FNR function enhances the effect of k13 mutation on ART resistance. Methods In this study, methoxyamino chalcone (C3), an antimalarial compound that has been reported to inhibit the interaction of recombinant Fd and FNR proteins, was used as a chemical inhibitor of the Fd/FNR redox system. We investigated the inhibitory effects of dihydroartemisinin (DHA), C3, and iron chelators including deferiprone (DFP), 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and deferiprone-resveratrol hybrid (DFP-RVT) against wild-type (WT), k13 mutant, fd mutant, and k13 fd double mutant P. falciparum parasites. Furthermore, we investigated the pharmacological interaction of C3 with DHA, in which the iron chelators were used as reference ART antagonists. Results C3 showed antimalarial potency similar to that of the iron chelators. As expected, combining DHA with C3 or iron chelators exhibited a moderately antagonistic effect. No differences were observed among the mutant parasites with respect to their sensitivity to C3, iron chelators, or the interactions of these compounds with DHA. Discussion The data suggest that inhibitors of the Fd/FNR redox system should be avoided as ART partner drugs in ART combination therapy for treating malaria.
Collapse
Affiliation(s)
- Tanyaluck Kampoun
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parichat Prommana
- Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Philip J. Shaw
- Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Hery Suwito
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
| | - Ni Nyoman Tri Puspaningsih
- Laboratory of Proteomics, University-CoE Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya, Indonesia
| | - Chairat Uthaipibull
- Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
- Thailand Center of Excellence for Life Sciences (TCELS), Bangkok, Thailand
| | | |
Collapse
|
5
|
Chuljerm H, Maneekesorn S, Punsawad C, Somsak V, Ma Y, Ruangsuriya J, Srichairatanakool S, Koonyosying P. Deferiprone-Resveratrol Hybrid, an Iron-Chelating Compound, Acts as an Antimalarial and Hepatoprotective Agent in Plasmodium berghei-Infected Mice. Bioinorg Chem Appl 2022; 2022:3869337. [PMID: 36466999 PMCID: PMC9715320 DOI: 10.1155/2022/3869337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Free heme in plasma acts as a prooxidant; thus, it is bound to hemopexin and eliminated by the liver. High iron content in the liver can support Plasmodium growth and cause oxidative liver injury. Inversely, the withholding of excessive iron can inhibit this growth and protect the liver against malaria infection. This study examined the effects of a deferiprone-resveratrol (DFP-RVT) hybrid on malaria parasites and its relevant hepatoprotective properties. Mice were infected with P. berghei, gavage DFP-RVT, deferiprone (DFP), and pyrimethamine (PYR) for 8 consecutive days. Blood and liver parameters were then evaluated. The presence of blood-stage parasites was determined using the microscopic Giemsa staining method. Subsequently, plasma liver enzymes, heme, and concentrations of thiobarbituric acid-reactive substances (TBARS) were determined. The liver tissue was examined pathologically and heme and TBARS concentrations were then quantified. The results indicate that the suppression potency against P. berghei growth occurred as follows: PYR > DFP-RVT hybrid > DFP. Importantly, DFP-RVT significantly improved RBC size, restored alanine aminotransferase and alkaline activities, and increased heme and TBARS concentrations. The compound also reduced the liver weight index, heme, and TBARS concentrations significantly when compared to mice that were untreated. Our findings support the contention that the hepatoprotective effect of DFP-RVT is associated with parasite burden, iron depletion, and lipid peroxidation in the host.
Collapse
Affiliation(s)
- Hataichanok Chuljerm
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Health Sciences Research, Research Institute for Health Sciences Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental and Occupational Health Sciences and Non Communicable Diseases Research Group (EOHS and NCD Research Group), Research Institute for Health Sciences Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yongmin Ma
- School of Pharmaceutical Sciences, Taizhou University, Zhejiang 318000, China
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Virendra SA, Sahu C, Kumar A, Chawla PA. Natural Antioxidants as Additional Weapons in the Fight against Malarial Parasite. Curr Top Med Chem 2022; 22:2045-2067. [PMID: 35524663 DOI: 10.2174/1568026622666220504172655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND All currently available antimalarial drugs are developed from natural product lineages that may be traced back to herbal medicines, including quinine, lapachol, and artemisinin. Natural products that primarily target free radicals or reactive oxygen species, play an important role in treating malaria. OBJECTIVES This review analyses the role of antioxidative therapy in treating malaria by scavenging or countering free radicals and reviews the importance of natural plant extracts as antioxidants in oxidative therapy of malaria treatment. METHODS The search for natural antioxidants was conducted using the following databases: ResearchGate, ScienceDirect, Google Scholar, and Bentham Science with the keywords malaria, reactive oxygen species, natural antioxidants, and antiplasmodial. CONCLUSION This study reviewed various literature sources related to natural products employed in antimalarial therapy directly or indirectly by countering/scavenging reactive oxygen species published between 2016 till date. The literature survey made it possible to summarize the natural products used in treating malaria, emphasizing botanical extracts as a single component and in association with other botanical extracts. Natural antioxidants like polyphenols, flavonoids, and alkaloids, have a broad range of biological effects against malaria. This review is pivoted around natural antioxidants obtained from food and medicinal plants and explores their application in restraining reactive oxygen species (ROS). We anticipate this article will provide information for future research on the role of antioxidant therapy in malaria infection.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Chandrakant Sahu
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Pooja Abrol Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|